Search results: Found 30

Listing 1 - 10 of 30 << page
of 3
>>
Sort by
Modelling the human cardiac fluid mechanics. 3rd ed

Author:
ISBN: 9783866443570 Year: Pages: 80 p. DOI: 10.5445/KSP/1000011015 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The third edition of this article on the modelling and simulation of the flow in human hearts supplements earlier editions. It discusses the flow-structure coupled heart model KAHMO FSI (Karlsruhe Heart Model) and examines patient-specific clinical application of the heart model for cardiac surgery. The KAHMO heart model can be used to predict flow losses and flow structures due to pathalogical ventricle defects. These are considered before and after surgery.

Cardiac Remodeling: New Insights in Physiological and Pathological Adaptations

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453313 Year: Pages: 117 DOI: 10.3389/978-2-88945-331-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

The effective management of Cardiac remodeling(CR), remains a major challenge. Heart failure remains the leading cause of death in industrialized countries. Yet, despite the enormity of the problem, effective therapeutic interventions remain elusive. In fact, several initially promising agents were found to decrease mortality in patients recovering from myocardial infarction. Cardiac remodeling is defined as molecular and interstitial changes, manifested clinically by changes in size, mass , geometry and function of the heart in response to certain aggression. Initially, ventricular remodeling aims to maintain stable cardiac function in situations of aggression.

Modelling the Human Cardiac Fluid Mechanics. 4th ed

Author:
ISBN: 9783866447943 Year: Pages: 98 p. DOI: 10.5445/KSP/1000016552 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

With the Karlsruhe Heart Model (KaHMo) we aim to share our vision of integrated computational simulation across multiple disciplines of cardiovascular research, and emphasis yet again the importance of Modelling the Human Cardiac Fluid Mechanics within the framework of the international STICH study. The focus of this work is on integrated cardiovascular fluid mechanics, and the potential benefits to future cardiovascular research and the wider bio-medical community.

Heart Rate Variability: Clinical Applications and Interaction between HRV and Heart Rate

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196524 Year: Pages: 166 DOI: 10.3389/978-2-88919-652-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Over the last decades, assessment of heart rate variability (HRV) has increased in various fields of research. HRV describes changes in heartbeat intervals, which are caused by autonomic neural regulation, i.e. by the interplay of the sympathetic and the parasympathetic nervous systems. The most frequent application of HRV is connected to cardiological issues, most importantly to the monitoring of post-myocardial infarction patients and the prediction of sudden cardiac death. Analysis of HRV is also frequently applied in relation to diabetes, renal failure, neurological and psychiatric conditions, sleep disorders, psychological phenomena such as stress, as well as drug and addiction research including alcohol and smoking. The widespread application of HRV measurements is based on the fact that they are noninvasive, easy to perform, and in general reproducible – if carried out under standardized conditions. However, the amount of parameters to be analysed is still rising. Well-established time domain and frequency domain parameters are discussed controversially when it comes to their physiological interpretation and their psychometric properties like reliability and validity, and the sensitivity to cardiovascular properties of the variety of parameters seems to be a topic for further research. Recently introduced parameters like pNNxx and new dynamic methods such as approximate entropy and detrended fluctuation analysis offer new potentials and warrant standardization. However, HRV is significantly associated with average heart rate (HR) and one can conclude that HRV actually provides information on two quantities, i.e. on HR and its variability. It is hard to determine which of these two plays a principal role in the clinical value of HRV. The association between HRV and HR is not only a physiological phenomenon but also a mathematical one which is due to non-linear (mathematical) relationship between RR interval and HR. If one normalizes HRV to its average RR interval, one may get ‘pure’ variability free from the mathematical bias. Recently, a new modification method of the association between HRV and HR has been developed which enables us to completely remove the HRV dependence on HR (even the physiological one), or conversely enhance this dependence. Such an approach allows us to explore the HR contribution to the clinical significance of HRV, i.e. whether HR or its variability plays a main role in the HRV clinical value. This Research Topic covers recent advances in the application of HRV, methodological issues, basic underlying mechanisms as well as all aspects of the interaction between HRV and HR.

CaMKII in Cardiac Health and Disease

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192991 Year: Pages: 165 DOI: 10.3389/978-2-88919-299-1 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Medicine (General) --- Therapeutics --- Science (General)
Added to DOAB on : 2015-12-10 11:59:07
License:

Loading...
Export citation

Choose an application

Abstract

The calcium-calmodulin dependent protein kinases (CaMKs) are a broadly expressed family of calcium-sensitive intracellular kinases, which are responsible for transducing cytosolic calcium signals into phosphorylation-based regulation of proteins and physiological functions. As the multifunctional member of the family, CaMKII has become the most prominent for its roles in the central nervous system and heart, where it controls a diverse range of calcium-dependent processes; from learning and memory at the neuronal synapse, to cellular growth and death in the myocardium. In the heart, CaMKII directly regulates many of the most important ion channels and calcium handling proteins, and controls the expression of an ever-increasing number of transcripts and their downstream products. Functionally, these actions are thought to orchestrate many of the electrophysiologic and contractile adaptations to common cardiac stressors, such as rapid pacing, chronic adrenergic stimulation, and oxidative challenge. In the context of disease, CaMKII has been shown to contribute to a remarkably wide variety of cardiac pathologies, of which heart failure (HF) is the most conspicuous. Hyperactivity of CaMKII is an established contributor to pathological cardiac remodeling, and is widely thought to directly promote arrhythmia and contractile dysfunction during HF. Moreover, several non-failing arrhythmia-susceptible phenotypes, which result from specific genetic channelopathies, functionally mimic constitutive channel phosphorylation by CaMKII. Because CaMKII contributes to both the acute and chronic manifestations of major cardiac diseases, but may be only minimally required for homeostasis in the absence of chronic stress, it has come to be one of the most promising therapeutic drug targets in cardiac biology. Thus, development of more specific and deliverable small molecule antagonists remains a key priority for the field. Here we provide a selection of articles to summarize the state of our knowledge regarding CaMKII in cardiac health and disease, with a particular view to highlighting recent developments in CaMKII activation, and new targets in CaMKII-mediated control of myocyte physiology.

Myofilament Function in Health and Disease

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451869 Year: Pages: 161 DOI: 10.3389/978-2-88945-186-9 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2017-08-28 14:01:09
License:

Loading...
Export citation

Choose an application

Abstract

The present E-book, consisting of a compilation of original articles and reviews, presents how myofilaments are regulated in cardiac and skeletal muscles and trigger contraction. Additionally, this E-book gives insights into their dysregulation in a number of muscle disorders.

Keywords

Contraction --- Muscle --- Heart --- skeletal muscle --- sarcomere --- Myosin --- Actin --- Myopathy

Physiology in Extreme Conditions: Adaptations and Unexpected Reactions

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453382 Year: Pages: 133 DOI: 10.3389/978-2-88945-338-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Physiology in extreme conditions can reveal important reactions of the human body, which help our assessment of limits emerging under healthy conditions and critical signals of transition toward disease. While many mechanisms could simply be associated with adaptations, others refer to unexpected reactions in response to internal stimuli and/or external abrupt changes.

Modified mass-spring system for physically based deformation modeling

Author:
Book Series: Karlsruhe transactions on biomedical engineering / Ed.: Karlsruhe Institute of Technology / Institute of Biomedical Engineering ISSN: 18645933 ISBN: 9783866447424 Year: Volume: 14 Pages: VII, 222 p. DOI: 10.5445/KSP/1000024308 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented.

Computer assisted optimization of cardiac resynchronization therapy

Author:
Book Series: Karlsruhe transactions on biomedical engineering / Ed.: Universität Karlsruhe (TH) / Institute of Biomedical Engineering ISSN: 18645933 ISBN: 9783866443600 Year: Volume: 6 Pages: IV, 293 p. DOI: 10.5445/KSP/1000011293 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

The efficacy of cardiac resynchronization therapy (CRT) through biventricular pacing (BVP) has been demonstrated by numerous studies in patients suffering from congestive heart failure. In order to achieve a guideline for optimal treatment with BVP devices, an automated non-invasive strategy based on an electrophysiological computer model of the heart is presented. The presented research investigates an off-line optimization algorithm based on different electrode positioning and timing delays.

Ventricular Mechanics in Congenital Heart Disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452644 Year: Pages: 120 DOI: 10.3389/978-2-88945-264-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Pediatrics
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Looking at "Horse in Motion", the iconic photograph by E. Muybridge, it is almost possible to hear the horse galloping. The pounding sound of the hoofs hitting the ground -like a drum- can also echo the rythmic beating of the human heart. That sound, that visceral rhythm, reminds us of the link between motion and performance: the perfectly executed stride of the horse, the incredible coordination of multiscale phenomena behind a heart beat. Furthermore, the decomposed sequence in Muybridge's photograph has become a well-known example of breaking motion into its components over time, and as such is reminiscent of those images that are routinely acquired in clinical practice, where the heart appears dilating and shirnking in a sequence of snapshots. The investigation of this motion and its subtleties is essential for refining our understanding of cardiac function, and the appreciation of how and when this motion is no longer perfectly executed can lead us to understand functional impairments and provide insight into the unfolding of pathology. In the presence of congenital heart disease (CHD), cardiac mechanics are altered: from single ventricle physiology to conduction abnormalities to different cardiomyopathies, it is important to both capture and interpret biomechanical changes that occur in the presence of a congenital defect. This special issue in Frontiers in Pediatrics, now an e-book, focuses on 'Ventricular mechanics in congenital heart disease' and looks at current knowledge of phenomena such as systolic/diastolic dysfuction and current methods (chiefly in cardiovascular magnetic resonance imaging and echocardiography) to evaluate cardiac function in the presence of CHD, and then presents a series of original studies that employ both medical imaging and computational modelling techniques to study specific CHD scenarios.

Listing 1 - 10 of 30 << page
of 3
>>
Sort by
Narrow your search