Search results: Found 7

Listing 1 - 7 of 7
Sort by
The unfolded protein response in virus infections

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193974 Year: Pages: 129 DOI: 10.3389/978-2-88919-397-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Botany
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Unfolded protein response (UPR) is a cellular adaptive response for restoring endoplasmic reticulum (ER) homeostasis in response to ER stress. Perturbation of the UPR and failure to restore ER homeostasis inevitably leads to diseases. It has now become evident that perturbation of the UPR is the cause of many important human diseases such as neurodegenerative diseases, cystic fibrosis, diabetes and cancer. It has recently emerged that virus infections can trigger the UPR but the relationship between virus infections and host UPR is intriguing. On one hand, UPR is harmful to the virus and virus has developed means to subvert the UPR. On the other hand, virus exploits the host UPR to assist in its own infection, gene expression, establishment of persistence, reactivation from latency and to evade the immune response. When this delicate balance of virus-host UPR interaction is broken down, it may cause diseases. This is particularly challenging for viruses that establish a chronic infection to maintain this balance. Each virus interacts with the host UPR in a different way to suit their life style and how the virus interacts with the host UPR can define the characteristic of a particular virus infection. Understanding how a particular virus interacts with the host UPR may pave the way to the design of a new class of anti-viral that targets this particular pathway to skew the response towards anti-virus. This knowledge can also be translated into the clinics to help re-design oncolytic virotherapy and gene therapy. In this research topic we aimed to compile a collection of focused review articles, original research articles, commentary, opinion, hypothesis and methods to highlight the current advances in this burgeoning area of research, in an attempt to provide an in-depth understanding of how viruses interact with the host UPR, which may be beneficial to the future combat of viral and human diseases.

Perspectives for the Next Generation of Virus Research: Spearheading the Use of Innovative Technologies and Methodologies

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452156 Year: Pages: 191 DOI: 10.3389/978-2-88945-215-6 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Infectious diseases are associated with approximately 20% of global mortality, with viral diseases causing about one third of these deaths. Besides newly emerging and re-emerging viral infections will continue to pose a threat to human survival globally. In this case scientific advances have greatly been increased to defend against those pathogens. For example, rapid genomic sequencing, proteomics, epigenomics, nanotechnology, and other advanced tools are being applied to detect viruses at the point of care and to track their spread within human populations as well as to understand virus-host interaction and virus induced pathogenesis. From rapid identification of new viruses to prevention with vaccination and treatment with effective therapeutics, biomedical research has continuously provided tools to meet the constant threat of emerging viral pathogens. Despite these advances, each new disease brings unique challenges to scientists every year. So we must stay at the cutting edge of scientific discovery, working energetically to develop new tools to combat the ever-changing threats they pose. Our research topic highlights such advanced and new technology based virus research which definitely bolsters the researcher's ability to tackle emerging, re-emerging and stable viral pathogens. We are credulous that the papers including in the e-books will be beneficial to the experts in the field to understand the molecular, immunological, ecological and clinical aspects of the next generation researches for the prevention and control of infectious diseases caused by viruses.

About the Foodborne Pathogen Campylobacter

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453887 Year: Pages: 221 DOI: 10.3389/978-2-88945-388-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Internal medicine
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

A significant increase in the prevalence of campylobacteriosis cases has been observed over the past years. Campylobacter has emerged as the leading cause of bacterial foodborne disease worldwide with a significant impact on human health and an associated economic burdens. Campylobacteriosis human cases have been generally correlated with the handling, preparation and consumption of poultry. In 2017, the European Commission regulation has amended Regulation (EC) No 2073/2005 on the hygiene of foodstuffs as regards Campylobacter on broiler carcasses stating a limit of 1000 cfu/g. Campylobacter is also present in other farm animals and is frequently found on a range of foodstuffs due to cross contamination. Among the pathogenic species, C. jejuni is the most prevalent species followed by C. coli. Current guidelines highlight the importance of biosecurity but these measures are failing to mitigate the risk of pathogenic Campylobacter. As an obligate microaerophile, Campylobacter does not multiply under atmospheric oxygen concentration at ambient temperatures. It therefore constitutes a puzzle as to how it can survive from farm to retail outlets. The underlying molecular mechanisms of persistence, survival and pathogenesis appear to be unique to this pathogen. Recent research has indicated how genomic polymorphism, restricted catabolic capacity, self regulation or deregulation of genes, bacterial cooperation and unknown contamination routes may be connected to this specificity.This book includes original studies on both C. jejuni and C. coli species dealing with epidemiology and animal carriage, host interaction, control strategies, metabolism and regulation specificities of these two pathogenic species, methodology to improve cultural techniques and chicken gut microbiota challenged with Campylobacter.

Computational Systems Biology of Pathogen-Host Interactions

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198214 Year: Pages: 198 DOI: 10.3389/978-2-88919-821-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

A thorough understanding of pathogenic microorganisms and their interactions with host organisms is crucial to prevent infectious threats due to the fact that Pathogen-Host Interactions (PHIs) have critical roles in initiating and sustaining infections. Therefore, the analysis of infection mechanisms through PHIs is indispensable to identify diagnostic biomarkers and next-generation drug targets and then to develop strategic novel solutions against drug-resistance and for personalized therapy. Traditional approaches are limited in capturing mechanisms of infection since they investigate hosts or pathogens individually. On the other hand, the systems biology approach focuses on the whole PHI system, and is more promising in capturing infection mechanisms. Here, we bring together studies on the below listed sections to present the current picture of the research on Computational Systems Biology of Pathogen-Host Interactions:- Computational Inference of PHI Networks using Omics Data- Computational Prediction of PHIs- Text Mining of PHI Data from the Literature- Mathematical Modeling and Bioinformatic Analysis of PHIs Computational Inference of PHI Networks using Omics Data Gene regulatory, metabolic and protein-protein networks of PHI systems are crucial for a thorough understanding of infection mechanisms. Great advances in molecular biology and biotechnology have allowed the production of related omics data experimentally. Many computational methods are emerging to infer molecular interaction networks of PHI systems from the corresponding omics data. Computational Prediction of PHIs Due to the lack of experimentally-found PHI data, many computational methods have been developed for the prediction of pathogen-host protein-protein interactions. Despite being emerging, currently available experimental PHI data are far from complete for a systems view of infection mechanisms through PHIs. Therefore, computational methods are the main tools to predict new PHIs. To this end, the development of new computational methods is of great interest. Text Mining of PHI Data from Literature Despite the recent development of many PHI-specific databases, most data relevant to PHIs are still buried in the biomedical literature, which demands for the use of text mining techniques to unravel PHIs hidden in the literature. Only some rare efforts have been performed to achieve this aim. Therefore, the development of novel text mining methods specific for PHI data retrieval is of key importance for efficient use of the available literature. Mathematical Modeling and Bioinformatic Analysis of PHIs After the reconstruction of PHI networks experimentally and/or computationally, their mathematical modeling and detailed computational analysis is required using bioinformatics tools to get insights on infection mechanisms. Bioinformatics methods are increasingly applied to analyze the increasing amount of experimentally-found and computationally-predicted PHI data. Acknowledgements: We, editors of this e-book, acknowledge Emrah Nikerel (Yeditepe University, Turkey) and Arzucan Özgür (Bogaaziçi University, Turkey) for their contributions during the initiation of the Research Topic.

Biotechnological Applications of Phage and Phage-Derived Proteins

Authors: ---
ISBN: 9783039214419 9783039214426 Year: Pages: 236 DOI: 10.3390/books978-3-03921-442-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Phages have shown a high biotechnological potential with numerous applications. The advent of high-resolution microscopy techniques aligned with omic and molecular tools have revealed innovative phage features and enabled new processes that can be further exploited for biotechnological applications in a wide variety of fields. The high-quality original articles and reviews presented in this Special Issue demonstrate the incredible potential of phages and their derived proteins in a wide range of biotechnological applications for human benefit. Considering the emergence of amazing new available bioengineering tools and the high abundance of phages and the multitude of phage proteins yet to be discovered and studied, we believe that the upcoming years will present us with many more fascinating and new previously unimagined phage-based biotechnological applications.

Keywords

gene expression regulation --- molecular probe --- macromolecular interactions --- phage-host interaction --- bacteriophage --- endolysin --- Clostridium perfringens --- alpha-sheet --- cancerous tumors --- capsid dynamics --- drug delivery vehicles --- native gel electrophoresis --- neurodegenerative disease --- pathogenic viruses --- phage display --- landscape phage --- major coat protein --- nanomedicine --- diagnostics --- biosensors --- M13 bacteriophage --- biofilm --- porous structure --- filters --- self-assembly --- T7phage library --- sarcoidosis --- tuberculosis --- microarray --- immunoscreening --- R-type pyocin --- bacteriocin --- contractile injection systems --- Pseudomonas aeruginosa --- X-ray crystallography --- receptor-binding protein --- Shigella flexneri --- bacteriophage --- tailspike proteins --- O-antigen --- serotyping --- microtiter plate assay --- fluorescence sensor --- bacteriophages --- encapsulation --- niosomes --- transfersomes --- liposomes --- Staphylococcus aureus --- phage --- Enterococcus faecalis --- Streptococcus agalactiae --- culture enrichment --- bacteriophage --- diagnostics --- Listeria monocytogenes --- endolysin --- magnetic separation --- reporter phage --- endolysin --- Pal --- Cpl-1 --- safety --- toxicity --- immune response --- Streptococcus pneumoniae --- self-assembly --- nanotubular structures --- tail sheath protein --- bacteriophage vB_EcoM_FV3 --- Appelmans --- bacteriophage evolution --- bacteriophage recombination --- phage therapy --- Pseudomonas aeruginosa --- antibiotic resistance --- bacteriophages --- Myoviridae --- bacteriophage-derived lytic enzyme --- enzybiotics --- endolysin --- in vitro activity --- ESKAPE --- n/a

Virus Bioinformatics

Authors: --- --- ---
ISBN: 9783039218820 9783039218837 Year: Pages: 330 DOI: 10.3390/books978-3-03921-883-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Virus bioinformatics is evolving and succeeding as an area of research in its own right, representing the interface of virology and computer science. Bioinformatic approaches to investigate viral infections and outbreaks have become central to virology research, and have been successfully used to detect, control, and treat infections of humans and animals. As part of the Third Annual Meeting of the European Virus Bioinformatics Center (EVBC), we have published this Special Issue on Virus Bioinformatics.

Keywords

bioinformatics --- virus --- comparative genomics --- software --- Base-By-Base --- BBB --- poxvirus --- ASFV --- MSA --- foot-and-mouth disease virus (FMDV) --- bovine soft palate --- nasopharynx --- transcriptomics --- proteomics --- bioinformatics --- virus-host interaction --- innate immune system --- interferon-stimulated genes (ISG) --- cellular immunity --- codon frequency distribution --- HPV58 --- minor capsid protein --- TLR agonist --- prophylaxis --- virus --- infection --- fluorescent reporter protein --- image quantification --- Hepatitis C virus --- Yellow Fever Virus --- polyomavirus --- Coxsackievirus B4 --- bivalve --- virome --- RNA-seq --- RNA viruses --- sncRNA --- ADAR --- RNAi --- Marek’s disease virus (MDV) --- RNA-seq --- transcriptome --- splicing --- polycistronic viral transcripts --- primary B cells --- RB1B --- CVI988/Rispens --- ICP0 --- DNA replication --- ori --- mitochondria --- Rickettsia --- gram-positive bacteria --- APMV --- Mimivirus --- giant virus --- eukaryogenesis --- flavivirus --- non-coding RNA --- secondary structure --- endogenous viral elements --- bioinformatics --- horizontal gene transfer --- virus-to-host gene transfer --- HMM --- tobacco mosaic virus --- Drosophila --- capsid protein --- deep sequencing --- virus genomics --- hepatitis C virus --- variant calling --- sequence interpretation --- drug resistance --- bioinformatics --- alignment --- assembly --- taxonomic classification --- time series --- data transformation --- DWT --- DFT --- PAA --- data compression --- compressive genomics --- RNAseq --- honey bees --- deformed wing virus --- quasispecies --- apiary pests --- recombination --- mRNA structure --- structure database --- secondary structure --- viral mRNA --- subVOG --- structurally related --- RNA structure --- structurally homogenous --- structurally related --- mRNA families --- Amebae viruses --- viral evolution --- protein domains --- mimivirus --- dsdna viruses --- translation machinery --- pandoravirus --- NCLDV --- virology --- virus bioinformatics --- software --- systems virology --- metagenomics --- virome --- viral taxonomy --- virus classification --- genome evolution --- bacteriophage --- virosphere --- chemical organization theory --- influenza A --- virus dynamics modeling --- complex networks analysis --- viral metagenome --- groundwater --- aquifer --- AquaDiva --- sequencing library preparation --- virus proteomics --- mass spectrometry --- virus diagnostics --- data analysis --- targeted proteomics --- peptide selection --- parallel reaction monitoring

Hurdles for Phage Therapy (PT) to Become a Reality

Author:
ISBN: 9783039213917 9783039213924 Year: Pages: 484 DOI: 10.3390/books978-3-03921-392-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Alternative treatment modes for antibiotic-resistant bacterial pathogens have become a public health priority. Bacteriophages are bacterial viruses that infect and lyse bacterial cells. Since bacteriophages are frequently bacterial host species-specific and can often also infect antibiotic-resistant bacterial cells, they could represent ideal antimicrobials for fighting the antibiotic resistance crisis. The medical use of bacteriophages has become known as phage therapy. It is widely used in Russia, where phage cocktails are sold in pharmacies as an over-the-counter drug. However, no phage product has been registered for medical purposes outside of the former Soviet Union. The current Special Issue of Viruses contains a collection of papers from opinion leaders in the field who explore hurdles to the introduction of phage therapy in western countries. The articles cover diverse topics ranging from patent to regulatory issues, the targeting of suitable bacterial infections, and the selection and characterization of safe and efficient phage cocktails. Phage resistance is discussed, and gaps in our knowledge of phage–bacterium interactions in the mammalian body are revealed, while other articles explore the use of phages in food production and processing.

Keywords

Staphylococcus aureus --- bacteriophage --- phage therapy --- vB_SauM-fRuSau02 --- Twortlikevirus --- antibiotic --- antimicrobial resistance --- magistral preparation --- compounding pharmacy --- phage therapy --- regulatory framework --- personalized medicine --- bacteriophage --- phage --- horizontal gene transfer --- co-evolution --- phage therapy --- industrial phage application --- antimicrobial resistance (AMR) --- Germany --- pH stability --- phage-host interactions --- genomics --- antibiotic-resistance --- phage preparation --- lysins --- biofilms --- typhoid fever --- Salmonella Typhi --- extended-spectrum beta lactamases (ESBL) --- Democratic Republic of the Congo --- bacteriophages --- MALDI-MS --- Staphylococcus --- bacteriophages --- phage therapy --- Kayvirus --- Viral proteins --- bacteriophage --- therapy --- phage therapy --- bacterial disease --- infection --- target selection --- Bacteriophage --- phage therapy --- resistance --- adaptation --- prophage --- production --- regulation --- phage therapy --- viral genomes --- best practices --- IND --- high-throughput sequencing --- bacteriophages --- phages --- food safety --- foodborne illness --- phage therapy --- history of science --- science communication --- bacteriophage --- phage therapy --- sustainable agriculture --- zoonosis --- antibiotic resistance --- phage therapy --- experimental therapy --- phage cocktails --- anti-phage antibodies --- prophage --- immunomodulation --- phage therapy --- evolution --- bacterial resistance --- virulence --- Listeria ivanovii --- bacteriophages --- alginate --- production --- disinfection --- phagodisinfection --- virus–host interactions --- bacteriophage efficacy --- gastrointestinal tract --- phage therapy --- bacteriophage --- phage therapy --- antimicrobial resistance --- antibiotic --- global health --- developing countries --- infectious disease --- bacteriophage --- phage --- phage therapy --- phage-resistance --- phage therapy --- bacterial infection --- capsule depolymerase --- antibiotic --- animal model --- bacterial resistance --- bacteriophage --- immunology --- innate immunity --- adaptive immunity --- human host --- phage-human host interaction --- bacterial infection --- antibiotic resistance --- bacteriophage --- antibiotic therapy --- phage therapy --- cases report --- abortive infection --- prophage --- adsorption --- Enterococcus --- rhamnopolysaccharide --- bacteriophage --- phage therapy --- Staphylococcus aureus --- biofilm --- antimicrobial --- frequency of resistance --- phage sensitivity --- resistance management --- nontraditional antibacterial --- bacteriophages --- phage therapy --- antibiotic resistance --- Pseudomonas aeruginosa --- Escherichia coli --- Staphylococcus aureus --- Brussels --- Belgium --- phage biocontrol --- patent landscape --- crop production --- bacteriophage --- phage therapy --- multidrug-resistant bacteria --- antimicrobial resistance --- bacteriophage therapy --- compassionate use --- antibiotic resistance --- phage therapy --- PTMP --- ATMP --- regulatory framework --- pharmaceutical paradigm shift --- clinical trial --- magistral formula --- personalized medicine --- phage therapy --- E. faecalis --- OrthoMCL --- antimicrobial resistance --- capsule --- Galleria mellonella --- Klebsiella pneumoniae --- phage therapy --- n/a --- antimicrobial resistance --- bacteriophage --- personalised medicines --- phage therapy --- pharmaceutical legislation --- regulatory framework

Listing 1 - 7 of 7
Sort by
Narrow your search