Search results:
Found 5
Listing 1  5 of 5 
Sort by

Choose an application
This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of realworld phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems.
anomalous diffusion  complexity  magnetic resonance imaging  fractional calculus  fractional complex networks  adaptive control  pinning synchronization  timevarying delays  impulses  reaction–diffusion terms  fractional calculus  mass absorption  diffusionwave equation  Caputo derivative  harmonic impact  Laplace transform  Fourier transform  MittagLeffler function  fractional calculus  fractionalorder system  long memory  time series  Hurst exponent  fractional  control  PID  parameter  meaning  audio signal processing  linear prediction  fractional derivative  musical signal  optimal randomness  swarmbased search  cuckoo search  heavytailed distribution  global optimization
Choose an application
Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.
fractional qdifference equation  existence and uniqueness  positive solutions  fixed point theorem on mixed monotone operators  fractional pLaplacian  Kirchhofftype equations  fountain theorem  modified functional methods  Moser iteration method  fractionalorder neural networks  delays  distributed delays  impulses  Mittag–Leffler synchronization  Lyapunov functions  Razumikhin method  generalized convexity  bvex functions  subbsconvex functions  oscillation  nonlinear differential system  delay differential system  ?fractional derivative  positive solution  fractional thermostat model  fixed point index  dependence on a parameter  Hermite–Hadamard’s Inequality  Convex Functions  Powermean Inequality  Jenson Integral Inequality  Riemann—Liouville Fractional Integration  Laplace Adomian Decomposition Method (LADM)  NavierStokes equation  Caputo Operator  fractionalorder system  model order reduction  controllability and observability Gramians  energy inequality  integral conditions  fractional wave equation  existence and uniqueness  initial boundary value problem  conformable fractional derivative  conformable partial fractional derivative  conformable double Laplace decomposition method  conformable Laplace transform  singular one dimensional coupled Burgers’ equation
Choose an application
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the stateoftheart of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.
ultraparabolic equation  ultradiffusion process  probabilistic representation  mathematical finance  linear elastostatics  layer potentials  fredholmian operators  fractional differential equations  fractional derivative  Abeltype integral  time delay  distributed lag  gamma distribution  macroeconomics  Keynesian model  integral transforms  Laplace integral transform  transmutation operator  generating operator  integral equations  differential equations  operational calculus of Mikusinski type  Mellin integral transform  fractional derivative  fractional integral  Mittag–Leffler function  Riemann–Liouville derivative  Caputo derivative  Grünwald–Letnikov derivative  spacetime fractional diffusion equation  fractional Laplacian  subordination principle  MittagLeffler function  Bessel function  exterior calculus  exterior algebra  electromagnetism  Maxwell equations  differential forms  tensor calculus  Fourier Theory  DFT in polar coordinates  polar coordinates  multidimensional DFT  discrete Hankel Transform  discrete Fourier Transform  Orthogonality  multispecies biofilm  biosorption  free boundary value problem  heavy metals toxicity  method of characteristics  relativistic diffusion equation  Caputo fractional derivatives of a function with respect to another function  BesselRiesz motion  Mittag–Leffler function  matrix function  Schur decomposition  Laplace transform  fractional calculus  central limit theorem  anomalous diffusion  stable distribution  fractional calculus  power law  n/a
Choose an application
This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials.
Fubini polynomials  wtorsion Fubini polynomials  fermionic padic integrals  symmetric identities  Chebyshev polynomials  sums of finite products  hypergeometric function  Fubini polynomials  Euler numbers  symmetric identities  elementary method  computational formula  two variable qBerstein polynomial  two variable qBerstein operator  qEuler number  qEuler polynomial  Fubini polynomials  Euler numbers  congruence  elementary method  qBernoulli numbers  qBernoulli polynomials  two variable qBernstein polynomials  two variable qBernstein operators  padic integral on ?p  the degenerate gamma function  the modified degenerate gamma function  the degenerate Laplace transform  the modified degenerate Laplace transform  Fibonacci  Lucas  linear form in logarithms  continued fraction  reduction method  sums of finite products of Chebyshev polynomials of the third and fourth kinds  Hermite  generalized Laguerre  Legendre  Gegenbauer  Jacobi  thirdorder character  classical Gauss sums  rational polynomials  analytic method  recursive formula  fermionic padic qintegral on ?p  qEuler polynomials  qChanghee polynomials  symmetry group  Apostoltype Frobenius–Euler polynomials  threevariable Hermite polynomials  symmetric identities  explicit relations  operational connection  qVolkenborn integral on ?p  Bernoulli numbers and polynomials  generalized Bernoulli polynomials and numbers of arbitrary complex order  generalized Bernoulli polynomials and numbers attached to a Dirichlet character ?  Changhee polynomials  Changhee polynomials of type two  fermionic padic integral on ?p  Chebyshev polynomials of the first, second, third, and fourth kinds  sums of finite products  representation  catalan numbers  elementary and combinatorial methods  recursive sequence  convolution sums  wellposedness  stability  acoustic wave equation  perfectly matched layer  Fibonacci polynomials  Lucas polynomials  trivariate Fibonacci polynomials  trivariate Lucas polynomials  generating functions  central incomplete Bell polynomials  central complete Bell polynomials  central complete Bell numbers  Legendre polynomials  Laguerre polynomials  generalized Laguerre polynomials  Gegenbauer polynomials  hypergeometric functions 1F1 and 2F1  Euler polynomials  Bernoulli polynomials  elementary method  identity  congruence  new sequence  Catalan numbers  elementary and combinatorial methods  congruence  conjecture  fluctuation theorem  thermodynamics of information  stochastic thermodynamics  mutual information  nonequilibrium free energy  entropy production
Choose an application
The aim of this special issue is to publish original research papers that cover recent advances in the theory and application of stochastic processes. There is especial focus on applications of stochastic processes as models of dynamic phenomena in various research areas, such as queuing theory, physics, biology, economics, medicine, reliability theory, and financial mathematics. Potential topics include, but are not limited to: Markov chains and processes; large deviations and limit theorems; random motions; stochastic biological model; reliability, availability, maintenance, inspection; queueing models; queueing network models; computational methods for stochastic models; applications to risk theory, insurance and mathematical finance.
measure of information  cumulative inaccuracy  mutual information  lower record values  parabolic equation  Cauchy problem  Monte Carlo method  unbiased estimator  vonNeumann–Ulam scheme  compound poisson insurance risk model  expected discounted penalty function  estimation  Fourier transform  Fouriercosine series  multidimensional birthdeath process  inhomogeneous continuoustime Markov chain  rate of convergence  one dimensional projection  Wiener–Poisson risk model  survival probability  Nonparametric threshold estimation  wet periods  total precipitation volume  asymptotic approximation  extreme order statistics  random sample size  testing statistical hypotheses  queueing systems  rate of convergence  nonstationary  Markovian queueing models  limiting characteristics  queuing network  retrials  statedependent marked Markovian arrival process  wireless telecommunication networks  timedependent queuelength probability  discretetime Geo/D/1 queue  closedform solution  Monte Carlo method  quasiMonte Carlo method  KoksmaHlawka inequality  quasirandom sequences  stochastic processes  processor heating and cooling  markovian arrival process  phasetype service time distribution  impatience  QuasiBirthandDeath process  matrixgeometric solution  truncated distribution  Markovian arrival process  multiclass arrival processes  product form  equitylinked death benefits  Fourier cosine series expansion  guaranteed minimum death benefit  option  valuation  Lévy process  compound Poisson risk model  generalized Gerber–Shiu discounted penalty function  Laplace transform  Dickson–Hipp operator  recursive formula
Listing 1  5 of 5 
Sort by
