Search results:
Found 3
Listing 1  3 of 3 
Sort by

Choose an application
The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
mean curvature  warped products  compact Riemannian manifolds  pointwise bislant immersions  inequalities  real hypersurfaces  nonflat complex space forms  *Ricci tensor  *Weyl curvature tensor  slant curves  Legendre curves  magnetic curves  Sasakian Lorentzian manifold  homogeneous manifold  homogeneous Finsler space  homogeneous geodesic  maximum principle  optimal control  Einstein manifold  evolution dynamics  cost functional  submanifold integral  SasakiEinstein  Kähler 2  orbifolds  links  formality  3Sasakian manifold  homogeneous space  vector equilibrium problem  generalized convexity  hadamard manifolds  weakly efficient pareto points  geodesic chord property  hypersphere  hyperbolic space  isoparametric hypersurface  Clifford torus  spherical Gauss map  finitetype  pointwise 1type spherical Gauss map  Laplace operator  isospectral manifolds  geodesic symmetries  D’Atri space  kD’Atri space  ??space
Choose an application
This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to reallife phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.
Legendre wavelets  collocation method  threestep Taylor method  asymptotic stability  timedependent partial differential equations  noninstantaneous impulses  Caputo fractional derivative  differential equations  state dependent delays  lipschitz stability  limitperiodic solutions  difference equations  exponential dichotomy  strong nonlinearities  effective existence criteria  population dynamics  discrete Lyapunov equation  difference equations  Hilbert space  dichotomy  exponential stability  ?Laplacian operator  mean curvature operator  heteroclinic solutions  problems in the real line  lower and upper solutions  Nagumo condition on the real line  fixed point theory  coupled nonlinear systems  functional boundary conditions  Schauder’s fixed point theory  Arzèla Ascoli theorem  lower and upper solutions  first order periodic systems  SIRS epidemic model  mathematical modelling  Navier–Stokes equations  global solutions  regular solutions  a priori estimates  weak solutions  kinetic energy  dissipation  Bäcklund transformation  Clairin’s method  generalized Liouville equation  Miura transformation  Kortewegde Vries equation  secondorder differential/difference/qdifference equation of hypergeometric type  nonuniform lattices  divideddifference equations  polynomial solution  integrodifferentials  Sumudu decomposition method  dynamical system
Choose an application
This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials.
Fubini polynomials  wtorsion Fubini polynomials  fermionic padic integrals  symmetric identities  Chebyshev polynomials  sums of finite products  hypergeometric function  Fubini polynomials  Euler numbers  symmetric identities  elementary method  computational formula  two variable qBerstein polynomial  two variable qBerstein operator  qEuler number  qEuler polynomial  Fubini polynomials  Euler numbers  congruence  elementary method  qBernoulli numbers  qBernoulli polynomials  two variable qBernstein polynomials  two variable qBernstein operators  padic integral on ?p  the degenerate gamma function  the modified degenerate gamma function  the degenerate Laplace transform  the modified degenerate Laplace transform  Fibonacci  Lucas  linear form in logarithms  continued fraction  reduction method  sums of finite products of Chebyshev polynomials of the third and fourth kinds  Hermite  generalized Laguerre  Legendre  Gegenbauer  Jacobi  thirdorder character  classical Gauss sums  rational polynomials  analytic method  recursive formula  fermionic padic qintegral on ?p  qEuler polynomials  qChanghee polynomials  symmetry group  Apostoltype Frobenius–Euler polynomials  threevariable Hermite polynomials  symmetric identities  explicit relations  operational connection  qVolkenborn integral on ?p  Bernoulli numbers and polynomials  generalized Bernoulli polynomials and numbers of arbitrary complex order  generalized Bernoulli polynomials and numbers attached to a Dirichlet character ?  Changhee polynomials  Changhee polynomials of type two  fermionic padic integral on ?p  Chebyshev polynomials of the first, second, third, and fourth kinds  sums of finite products  representation  catalan numbers  elementary and combinatorial methods  recursive sequence  convolution sums  wellposedness  stability  acoustic wave equation  perfectly matched layer  Fibonacci polynomials  Lucas polynomials  trivariate Fibonacci polynomials  trivariate Lucas polynomials  generating functions  central incomplete Bell polynomials  central complete Bell polynomials  central complete Bell numbers  Legendre polynomials  Laguerre polynomials  generalized Laguerre polynomials  Gegenbauer polynomials  hypergeometric functions 1F1 and 2F1  Euler polynomials  Bernoulli polynomials  elementary method  identity  congruence  new sequence  Catalan numbers  elementary and combinatorial methods  congruence  conjecture  fluctuation theorem  thermodynamics of information  stochastic thermodynamics  mutual information  nonequilibrium free energy  entropy production
Listing 1  3 of 3 
Sort by
