Search results:
Found 3
Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Wireless sensor/actuators networks (WSANs) are being increasingly used in a panoply of applications, such as industrial automation, process control, ambient assisted living, structural health monitoring, and homeland security. Most of these applications require specific quality-of-service (QoS) guarantees from their underlying communication infrastructures (regardless of their wireless, wired, or hybrid nature).This book gathers together an extremely rich set of contributions, addressing several WSAN domains and sharing QoS as a common denominator. Eight papers have made it through a rigorous and iterative peer review process (three reviews per paper, at least two review rounds), involving 38 authors from all over the world (North and South America, Europe, Asia, and Australia) from academia, industry, and the military. Each paper features at least one reference author which is highly reputed in this scientific domain, totaling over 100,000 citations altogether.
quality-of-service --- QoS --- reliability --- timeliness --- real-time --- mobility --- scalability --- wireless sensor networks --- sensor/actuator networks --- networked embedded systems --- low-power wireless networks --- energy-aware protocols --- cyber-physical systems --- routing --- MAC --- IEEE 802.15.4e --- network calculus --- LoRa --- SigFox --- battery-powered devices --- unmanned aerial vehicles, UAVs --- swarms communication --- RSSI localization --- scheduling --- decision-centric resource management
Choose an application
Cooperative connected and automated mobility (CCAM) has the potential to reshape the transportation ecosystem in a revolutionary way. Transportation systems will be safer, more efficient and more comfortable. Cars are going to be the third living space, as passengers will have the freedom to use their car to live, work and travel. Despite the massive effort devoted, both by academia and industry, to developing connected and automated vehicles, there are still many issues to be addressed, including not only scientific and technological, but also regulatory and political issues. This book, mostly centered on the scientific and technological aspects of CCAMs, features seven articles highlighting recent advances of the state of the art in different CCAM technologies. Two papers address vehicular platooning, a key application for day-1 automated driving, other presents a scheme to improve the resource utilization of vehicular networks, while another paper addresses critical train communications, proposing an architecture based on 5G, SDN and MPTCP to provide path diversity and end-to-end redundancy. One paper describes the status of roadside deployment activities and analyzes the policies and practices of cooperative driving in the European Union. Finally, two review papers, one on congestion control techniques for VANETs and the other on fault tolerance techniques for vehicular networks, conclude the book.
cooperative control --- vehicular platoon --- multi-agent system --- communication delay --- system decoupling --- congestion control --- V2V --- VANET --- cooperative driving --- European framework --- smart roads --- C-ITS services --- open-road pilot sites --- vehicle to everything (V2X) testbeds --- 5G --- train-to-ground --- software-defined networking --- multipath TCP --- adaptable --- reliability --- resiliency --- path diversity --- quality of service (QoS) --- vehicular networks (VNET) --- Mobile edge computing (MEC) --- multi-task scheduling (MTS) --- multi-objective optimization (MOO) --- upper bound --- Pareto optimal solution --- VANETs --- IEEE 802.11p MAC --- overlay TDMA --- empirical models --- wireless vehicular communications --- systematic review --- fault tolerance --- dependability --- n/a
Choose an application
The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic.
narrowband --- IoT --- PHY --- NB-IoT --- MAC --- deployment --- survey --- mMTC --- 5G --- grant-free --- scheduling --- URLLC --- ultra-reliable and low-latency communications --- 5G --- deterministic --- time-critical --- reliability --- latency --- aperiodic traffic --- Industry 4.0 --- 5G --- mMTC --- IoT --- CSMA --- SINR --- throughput --- polynomial interpolation --- 5G --- liquid detection --- radio propagation --- dielectric constant --- WCI --- congestion --- estimation --- irregular repetition slotted ALOHA --- medium access control --- random access --- successive interference cancellation --- 5G --- internet of things --- mMTC --- eMBB --- stochastic geometry --- resource allocation --- Internet of Things --- Industry 4.0 --- Internet of Things --- Industrial Internet of Things --- Cyber Physical System --- cloud computing --- fog computing --- edge computing --- smart devices --- smart factory --- industrial automation --- M2M --- heterogeneous networks --- non-orthogonal multiple access --- energy efficiency --- MU association --- power control --- D2D communication --- 5G --- sensor network --- sensor --- end-to-end delay --- USRP --- distributed mechanism --- Raspberry Pi
Listing 1 - 3 of 3 |
Sort by
|