Search results: Found 2

Listing 1 - 2 of 2
Sort by
Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function

Authors: ---
ISBN: 9783039216888 9783039216895 Year: Pages: 240 DOI: 10.3390/books978-3-03921-689-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including immunity, neurobiology and metabolic homeostasis, and have been implicated in tumorigenesis, pathological inflammation and metabolic disorders. Accordingly, alterations in the expression or function of MKPs and small-size atypical DUSPs have consequences essential to human disease, making these enzymes potential biological markers and therapeutic targets. This Special Issue covers recent advances in the molecular mechanisms and biological functions of MKPs and small-size atypical DUSPs, and their relevance in human disease.

Jasmonic Acid Pathway in Plants

Author:
ISBN: 9783039284887 / 9783039284894 Year: Pages: 346 DOI: 10.3390/books978-3-03928-489-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The plant hormone jasmonic acid (JA) and its derivative, an amino acid conjugate of JA (jasmonoyl isoleucine, JA-Ile), are signaling compounds involved in the regulation of defense and development in plants. The number of articles studying on JA has dramatically increased since the 1990s. JA is recognized as a stress hormone that regulates the plant response to biotic stresses such as herbivore and pathogen attacks, as well as abiotic stresses such as wounding and ultraviolet radiation. Recent studies have remarkably progressed the understanding of the importance of JA in the life cycle of plants. JA is directly involved in many physiological processes, including stamen growth, senescence, and root growth. JA regulates production of various metabolites such as phytoalexins and terpenoids. Many regulatory proteins involved in JA signaling have been identified by screening for Arabidopsis mutants. However, much more remains to be learned about JA signaling in other plant species. This Special Issue, “Jasmonic Acid Pathway in Plants”, contains 5 review and 15 research articles published by field experts. These articles will help with understanding the crucial roles of JA in its response to the several environmental stresses and development in plants.

Keywords

albino --- aroma --- Camellia sinensis --- chloroplast --- jasmonic acid --- light-sensitive --- stress --- tea --- volatile --- Panax ginseng --- gene expression --- ginsenoside --- methyl jasmonate --- MYB transcription factor --- dammarenediol synthase --- jasmonic acid --- signaling pathway --- environmental response --- biological function --- MeJA --- priming --- rice --- proteomics --- ROS --- chlorophyll fluorescence imaging --- MAP kinase --- jasmonate --- rice bacterial blight --- salicylic acid --- grain development --- Prunus avium --- Tuscan varieties --- jasmonic acid --- lipoxygenase --- bioinformatics --- gene expression --- heterotrimeric G proteins --- AtRGS1 --- jasmonates --- endocytosis --- diffusion dynamics --- Chinese flowering cabbage --- leaf senescence --- JA --- transcriptional activation --- adventitious rooting --- auxin --- ectopic metaxylem --- ectopic protoxylem --- ethylene --- hypocotyl --- jasmonates --- nitric oxide --- xylogenesis --- transcriptional regulators --- plant development --- jasmonic acid signaling --- gene expression --- Jasmonate-ZIM domain --- JAZ repressors --- Jas domain --- TIFY --- degron --- phylogenetic analysis --- ancestral sequences --- circadian clock --- jasmonic acid --- crosstalk --- jasmonic acid --- fatty acid desaturase --- multiseeded --- msd --- grain number --- MutMap --- sorghum --- Ralstonia solanacearum --- type III effector --- jasmonic acid --- salicylic acid --- Nicotiana plants --- PatJAZ6 --- jasmonic acid (JA) signaling pathway --- Pogostemon cablin --- patchouli alcohol --- biosynthesis --- jasmonate --- salt response --- Zea mays --- ROS --- proline --- ABA biosynthesis --- jasmonic acid --- crosstalk --- gibberellic acid --- cytokinin --- auxin --- jasmonic acid --- opr3 --- stress defense --- quantitative proteomics --- abiotic stresses --- jasmonates --- JA-Ile --- JAZ repressors --- transcription factor --- signaling --- antioxidant enzyme activity --- elicitor --- methyl jasmonate --- secondary metabolite --- signal molecules --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (1)

2019 (1)