Search results: Found 75

Listing 1 - 10 of 75 << page
of 8
>>
Sort by
Emerging roles of long noncoding RNAs in neurological diseases and metabolic disorders

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195718 Year: Pages: 76 DOI: 10.3389/978-2-88919-571-8 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Science (General) --- Genetics
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Long noncoding RNAs (lncRNAs) are a new class of transcripts that are in general longer than 200 nucleotides and that have no protein-coding potential. The vast majority of vertebrate genomes encode diverse and complex lncRNAs that play regulatory roles at almost every step of gene expression. Recently, increasing evidence has implicated lncRNAs in the pathogenesis of various human diseases. The purpose of the Research Topic, "Emerging roles of long noncoding RNAs in neurological diseases and metabolic disorders", is to bring together leading researchers in the field who, through contributing to an organized and comprehensive collection of peer-reviewed articles, provide a broad perspective on the latest advances in the field. A number of interesting and cutting-edge areas will be covered as below, but this list is not exclusive:- The methodologies and technologies of identifying and studying lncRNAs - LncRNAs in gene-specific transcription - LncRNAs in epigenetic regulation - LncRNAs in post-transcriptional regulation - LncRNAs in disease - Mapping of noncoding single nucleotide polymorphisms associated with disease.

Exploring Cancer Metabolic Reprogramming Through Molecular Imaging

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452347 Year: Pages: 242 DOI: 10.3389/978-2-88945-234-7 Language: English
Publisher: Frontiers Media SA
Subject: Oncology --- Medicine (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.

Engineering Rumen Metabolic Pathways: Where We Are, and Where Are We Heading

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454266 Year: Pages: 280 DOI: 10.3389/978-2-88945-426-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Ruminants were domesticated in the Middle East about 10,000 years ago and have since become an inseparable part of human diet, society, and culture. Ruminants can transform inedible plant fiber and non-protein nitrogen into meat, milk, wool and traction, thus allowing human utilization of non-tillable land and industrial by-products. The nutritional flexibility of ruminants is conferred by the rumen´s complex microbial community.Driven by rising income and population growth in emergent economies, the global demand for livestock products, including milk and meat from ruminants, has been increasingly growing, and is predicted to continue growing in the next few decades. The increase in production necessary to satisfy this rising demand is putting much pressure on already dwindling natural resources. There are also concerns about the emissions of methane and nitrous oxide, potent greenhouse gases associated to ruminant production. The need to make ruminant production more efficient in the use of natural resources poses a big challenge to ruminant science, and within it, rumen microbiology. Recent years have seen important advances in basic and applied rumen microbiology and biochemistry. The knowledge generated has significant implications for the efficiency and sustainability of ruminant production and the quality of ruminant products for human health. The present compilation is an update of recent advances in rumen microbiology and ruminant digestion and fermentation, including original research, reviews, and hypothesis and theory articles. We hope that the experimental results, discussion, models and ideas presented herein are useful to foster future research contributing to sustainable ruminant production.

Host-adapted metabolism and its regulation in Bacterial Pathogens

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195381 Year: Pages: 176 DOI: 10.3389/978-2-88919-538-1 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Pathogens adapt their metabolism rapidly to the host. Our topic covers these phenomenon regarding extracellular and intracellular pathogens as well as general methods to elucidate different metabolic adaptation processes - an essential guide for any scientist wanting to keep abreast of recent developments in infection biology.

Endoplasmic Reticulum Stress Response and Transcriptional Reprogramming

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194360 Year: Pages: 97 DOI: 10.3389/978-2-88919-436-0 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Endoplasmic reticulum (ER) is an intracellular organelle responsible for protein folding and assembly, lipid and sterol biosynthesis, and calcium storage. A number of biochemical, physiological, or pathological stimuli can interrupt protein folding process, causing accumulation of unfolded or misfolded proteins in the ER lumen, a condition called “ER stress”. To cope with accumulation of unfolded or misfolded proteins, the ER has evolved a group of signaling pathways termed “Unfolded Protein Response (UPR)” or “ER stress response” to align cellular physiology. To maintain ER homeostasis, transcriptional regulation mediated through multiple UPR branches is orchestrated to increase ER folding capacity, reduce ER workload, and promote degradation of misfolded proteins. In recent years, accumulating evidence suggests that ER stress-triggered transcriptional reprogramming exists in many pathophysiological processes and plays fundamental roles in the initiation and progression of a variety of diseases, such as metabolic disease, cardiovascular disease, neurodegenerative disease, and cancer. Understanding effects and mechanisms of ER stressassociated transcriptional reprogramming has high impact on many areas of molecular genetics and will be particularly informative to the development of pharmacologic avenues towards the prevention and treatment of modern common human diseases by targeting the UPR signaling. For these reasons, ER stress response and transcriptional reprogramming are a timely and necessary topic of discussion for Frontiers in Genetics.The important topics in this area include but not limited to:(1) ER-resident transcription factors and their involvements in ER stress response and cell physiology; (2) Physiologic roles and molecular mechanisms of ER stress-associated transcriptional regulation in lipid and glucose metabolism; (3) In vitro and in vivo models for ER stress-associated transcriptional reprogramming; (4) ER stress-associated transcriptional regulation in human disease; (5) Therapeutic potentials by targeting ER stress response pathways.

T Cell Regulation by the Environment

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197330 Year: Pages: 115 DOI: 10.3389/978-2-88919-733-0 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Naïve T cells get activated upon encounter with their cognate antigen and differentiate into a specific subset of effector cells. These T cells are themselves plastic and are able to re-differentiate into another subset, changing both phenotype and function. Differentiation into a specific subset depends on the nature of the antigen and of the environmental milieu. Notably, certain nutrients, such as vitamins A and D, sodium chloride, have been shown to modulate T cell responses and influence T cell differentiation. Parasite infection can also skew Th differentiation. Similarly, the gut microbiota regulates the development of immune responses. Lastly, the key role of metabolism on T cells has also been demonstrated. This series of articles highlights some of the multiple links existing between environmental factors and T cell responses.

Biomarkers in Drug Hypersensitivity

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452262 Year: Pages: 104 DOI: 10.3389/978-2-88945-226-2 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Biomarkers, especially those based on pharmacogenomics testing, have proved to be extremely useful for type A adverse drug reactions. Clinical practice guidelines based on biomarker testing are presently being developed and updated for type A adverse drug reactions. In contrast, little attention has been paid to the potential use of biomarkers in type B adverse reactions, characterized by the occurrence of reactions not directly related to the pharmacological properties of the drug. Drug-induced hypersensitivity belongs to those type B reactions. Drug-induced hypersensitivity reactions involve complex mechanisms that include, among others, the metabolic activation and haptenization of drug metabolites. Hence, factors that influence the pharmacokinetics of drug and metabolites may contribute to the development of some drug-induced hypersensitivity reactions. This implies that processes such as ADME (absorption, distribution, metabolism and excretion) that are typically involved in type A adverse drug reactions, may have a role in hypersensitivity reactions too. In addition to metabolic activation, several signal transduction pathways participate and modulate the development and the clinical presentation of drug hypersensitivity. The diverse mechanisms underlying such drug-hypersensitivity reactions lead to four major groups of reactions according to the Gell and Coombs classification: immediate, cytotoxic, immune complex and delayed. The enormous complexity of drug-hypersensitivity reactions is a consequence of the variety of mechanisms involved, which may be related, among others, to drug metabolism, generation of antigenic signals, stimulation and maturation of dendritic cells, presentation of haptens and mechanisms of cytotoxicity. In addition, a plethora of possible clinical presentations exists, including urticaria, angioedema, anaphylaxis, cytopenias, nephritis, serum sickness, vasculitis, contact dermatitis, drug rash, eosinophilia and systemic symptoms, Stevens–Johnson syndrome, toxic epidermal necrolysis and acute generalized exanthematous pustulosis. The rapid progress in the field in recent years indicates that the combination of several disciplines is essential to understand the mechanisms involved in this particular, and not completely understood, type of adverse drug reactions. The objective of this Research Topic is to present insights obtained from both basic and clinical scientists, which may include studies related to the identification, validation, refinement and clinical implementation of biomarkers for drug-induced hypersensitivity. The Topic aims to include recent findings related, but not limited to, potential phenomic, genomic, proteomic, metabolomic and signal transduction biomarkers. These biomarkers could eventually be used in clinical practice and/or these might contribute, as a proof of concept, to our understanding of the complex events leading to drug hypersensitivity reactions. In addition the Topic will cover recent developments and methodological advances in the diagnosis, prevention and therapeutic management of drug-induced hypersensitivity.

Pharmacokinetics and Drug Metabolism in Canada: The Current Landscape

Authors: ---
ISBN: 9783038427971 9783038427988 Year: Pages: VIII, 302 DOI: 10.3390/books978-3-03842-798-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics
Added to DOAB on : 2018-04-06 13:44:18
License:

Loading...
Export citation

Choose an application

Abstract

Canadian Pharmaceutical Scientists have a rich history of ground-breaking research in pharmacokinetics and drug metabolism undertaken throughout its Pharmacy and Medical Schools and within the Pharmaceutical and biotechnology industry. The principle of drug Absorption, Distribution, Metabolism and Excretion (ADME) is the foundational basis of rationale drug-design, and pharmacotherapy. The study of ADME and its descriptive quantitative analysis is the basis of pharmacokinetics. Pharmacokinetics is fundamental in the development of a new chemical entity into a marketable product and is essential in understanding the bioavailability, bioequivalence and biosimilarities of drugs. Pharmacokinetics and drug development studies facilitate an understanding of organ-based functionality. Population pharmacokinetic variability and the modeling of drug concentrations has significant utility in translating individual response in a target patient population.This special issue serves to highlight and capture the contemporary progress and current landscape of pharmacokinetics and drug metabolism within the prevailing Canadian context. We invite articles on all aspects of Pharmacokinetics and Drug Metabolism studies highlighting the world-class research currently undertaken in Canada for this special issue.

Systems Biology and the Challenge of Deciphering the Metabolic Mechanisms Underlying Cancer

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453337 Year: Pages: 142 DOI: 10.3389/978-2-88945-333-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology --- Biology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Since the discovery of the Warburg effect in the 1920s cancer has been tightly associated with the genetic and metabolic state of the cell. One of the hallmarks of cancer is the alteration of the cellular metabolism in order to promote proliferation and undermine cellular defense mechanisms such as apoptosis or detection by the immune system. However, the strategies by which this is achieved in different cancers and sometimes even in different patients of the same cancer is very heterogeneous, which hinders the design of general treatment options.Recently, there has been an ongoing effort to study this phenomenon on a genomic scale in order to understand the causality underlying the disease. Hence, current “omics” technologies have contributed to identify and monitor different biological pieces at different biological levels, such as genes, proteins or metabolites. These technological capacities have provided us with vast amounts of clinical data where a single patient may often give rise to various tissue samples, each of them being characterized in detail by genomescale data on the sequence, expression, proteome and metabolome level. Data with such detail poses the imminent problem of extracting meaningful interpretations and translating them into specific treatment options. To this purpose, Systems Biology provides a set of promising computational tools in order to decipher the mechanisms driving a healthy cell’s metabolism into a cancerous one. However, this enterprise requires bridging the gap between large data resources, mathematical analysis and modeling specifically designed to work with the available data. This is by no means trivial and requires high levels of communication and adaptation between the experimental and theoretical side of research.

Functional and Bioactive Properties of Food

Authors: ---
ISBN: 9783038973546 9783038973553 Pages: 174 DOI: 10.3390/books978-3-03897-355-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Nutrition and Food Sciences --- Biology
Added to DOAB on : 2018-11-23 11:11:39
License:

Loading...
Export citation

Choose an application

Abstract

Diet and nutrition are key tools in promoting health and reducing the comorbidities of chronic diseases. There are thousands of biomolecules in fruits, vegetables, wild and medicinal plants, other land and marine organisms, which can exert functional and health-promoting effects through bioactivity beyond nutrition. From the enormous amount of knowledge generated from different natural bioactive ingredients present in foods, we are aiming to bring together experts working in different fields of food, nutrition, and health, in order to work on this Special Issue, with a comprehensive collection of papers to gain insight into the most promising bioactive compounds in different foods, to improve the preservation of bioactivity during the food processing chain, and to provide scientific evidence of the efficacy of key bioactives in foods in preventing disease and improving health and wellbeing.

Listing 1 - 10 of 75 << page
of 8
>>
Sort by
Narrow your search

Publisher

Frontiers Media SA (43)

MDPI - Multidisciplinary Digital Publishing Institute (32)


License

CC by (47)

CC by-nc-nd (28)


Language

english (58)

eng (16)


Year
From To Submit

2019 (20)

2018 (13)

2017 (12)

2016 (12)

2015 (14)

2014 (3)