Search results: Found 3

Listing 1 - 3 of 3
Sort by
Critical Materials:Underlying Causes and Sustainable Mitigation Strategies

Author:
Book Series: World Scientific Series in Current Energy Issues ISBN: 9789813271050 Year: Volume: 1 Pages: 392 DOI: 10.1142/11007 Language: ENGLISH
Publisher: World Scientific Publishing Co.
Subject: Industrial Engineering
Added to DOAB on : 2020-05-30 14:59:16
License:

Loading...
Export citation

Choose an application

Abstract

This book covers a new frontier of research in Critical Materials that provides insight in terms of the possible sustainable mitigation strategies, the complexity, broadness and multi-disciplinarity of the subject. By exploring in both "systems view" and "in-depth materials view" in light of the circular economy, this book tackles the problem of sustainable usage of materials that is closely intertwined with the energy issue and climate change. Topics covered include: geopolitics of materials, the energy-materials nexus, definitions of the criticality of materials, circular product design, the development of alternative materials (substitution), sustainable mining and recycling.

Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Viticulture and Winemaking under Climate Change

Author:
ISBN: 9783039219742 9783039219759 Year: Pages: 294 DOI: 10.3390/books978-3-03921-975-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Meteorology and Climatology
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The importance of viticulture and the winemaking socio-economic sector is acknowledged worldwide. The most renowned winemaking regions show very specific environmental characteristics, where climate usually plays a central role. Considering the strong influence of weather and climatic factors on grapevine yields and berry quality attributes, climate change may indeed significantly impact this crop. Recent trends already point to a pronounced increase in growing season mean temperatures, as well as changes in precipitation regimes, which have been influencing wine typicity across some of the most renowned winemaking regions worldwide. Moreover, several climate scenarios give evidence of enhanced stress conditions for grapevine growth until the end of the century. Although grapevines have high resilience, the clear evidence for significant climate change in the upcoming decades urges adaptation and mitigation measures to be taken by sector stakeholders. To provide hints on the abovementioned issues, we have edited a Special Issue entitled “Viticulture and Winemaking under Climate Change”. Contributions from different fields were considered, including crop and climate modeling, and potential adaptation measures against these threats. The current Special Issue allows for the expansion of scientific knowledge in these particular fields of research, as well as providing a path for future research.

Keywords

viticulture --- crop model --- phenology --- physiological processes --- climate --- micrometeorology --- microclimate --- climate change --- water limitation --- dry mass partitioning --- assimilation --- intercellular CO2 --- stomatal conductance --- leaf water potential --- Vitis vinifera L. --- production system --- S-ABA --- rate of anthocyanin accumulation --- CIRG --- bioactive compounds --- Botrytis cinerea --- low-input --- mechanical thinning --- viticultural training system --- yield formation --- leaf area --- table grapes --- photosynthesis --- berry composition --- phenolics --- natural hail --- grapevine --- phenology --- phenology modelling platform --- Touriga Franca --- Touriga Nacional --- climate change --- RCP4.5 --- EURO-CORDEX --- Douro wine region --- Portugal --- global warming --- technological and phenolic ripeness --- grape --- wine --- sensory analysis --- climate change --- elevated CO2 --- grapevine pest --- mealybug --- parasitoid --- FACE --- predawn water potential --- PRI --- remote sensing --- vineyards --- water status --- WI --- climate change --- Vitis vinifera L. --- general circulation model --- EURO-CORDEX --- phenological model --- grapevine --- Virtual Riesling --- climate change --- temperature --- plant architecture --- crop management --- modelling --- climate change --- viticulture --- adaptation --- temperature --- drought --- plant material --- rootstock --- training system --- phenology --- modeling --- Vitis vinifera --- autochthonous cultivar --- ’Uva Rey’ --- unmanned aerial vehicles --- vigour maps --- spatial variability --- normalized difference vegetation index --- crop water stress index --- crop surface model --- precision viticulture --- climate change --- multi-temporal analysis --- Vitis vinifera (L.) --- SO2 pads --- B. cinerea mold --- grape quality --- light micro-climates --- mitigation strategies --- kaolin --- irrigation --- Vitis vinifera L. --- grape berry tissues --- pulse amplitude modulated (PAM) fluorometry --- photosynthesis --- photosynthetic pigments --- viticulture --- winemaking --- climatic influence --- climate change --- adaptation measures

Listing 1 - 3 of 3
Sort by
Narrow your search