Search results:
Found 3
Listing 1  3 of 3 
Sort by

Choose an application
This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of realworld phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems.
anomalous diffusion  complexity  magnetic resonance imaging  fractional calculus  fractional complex networks  adaptive control  pinning synchronization  timevarying delays  impulses  reaction–diffusion terms  fractional calculus  mass absorption  diffusionwave equation  Caputo derivative  harmonic impact  Laplace transform  Fourier transform  MittagLeffler function  fractional calculus  fractionalorder system  long memory  time series  Hurst exponent  fractional  control  PID  parameter  meaning  audio signal processing  linear prediction  fractional derivative  musical signal  optimal randomness  swarmbased search  cuckoo search  heavytailed distribution  global optimization
Choose an application
In order to measure and quantify the complex behavior of realworld systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and nonuniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineeringoriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and antisynchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.
multitime scale fractional stochastic differential equations  fractional Brownian motion  fractional stochastic partial differential equation  analytical solution  nonautonomous (autonomous) dynamical system  topological entropy  (asymptotical) focal entropy point  disturbation  mdimensional manifold  geometric nonlinearity  Bernoulli–Euler beam  colored noise  noise induced transitions  true chaos  Lyapunov exponents  wavelets  Lyapunov exponents  Wolf method  Rosenstein method  Kantz method  neural network method  method of synchronization  Benettin method  Fourier spectrum  Gauss wavelets  fractional calculus  Adomian decomposition  Mittag–Leffler function  descriptor fractional linear systems  regular pencils  Schur factorization  hyperchaotic system  selfsynchronous stream cipher  permutation entropy  image encryption  wavelet transform  product MValgebra  partition  Tsallis entropy  conditional Tsallis entropy  dynamical system  discrete chaos  discrete fractional calculus  hidden attractors  approximate entropy  stabilization  Information transfer  continuous flow  discrete mapping  Lorenz system  Chua’s system  deterministic chaos  random number generator  unbounded chaos  bounded chaos  phaselocked loop  Gaussian white noise  n/a
Choose an application
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably widespread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences.
highly oscillatory  convolution quadrature rule  volterra integral equation  Bessel kernel  convergence  higher order Schwarzian derivatives  Janowski starlike function  Janowski convex function  bound on derivatives  tangent numbers  tangent polynomials  Carlitztype qtangent numbers  Carlitztype qtangent polynomials  (p,q)analogue of tangent numbers and polynomials  (p,q)analogue of tangent zeta function  symmetric identities  zeros  Lommel functions  univalent functions  starlike functions  convex functions  inclusion relationships  analytic function  Hankel determinant  exponential function  upper bound  nonlinear boundary value problems  fractionalorder differential equations  RiemannStieltjes functional integral  LiouvilleCaputo fractional derivative  infinitepoint boundary conditions  advanced and deviated arguments  existence of at least one solution  Fredholm integral equation  Schauder fixed point theorem  Hölder condition  generalized Kuramoto–Sivashinsky equation  modified Kudryashov method  exact solutions  Maple graphs  analytic function  Hadamard product (convolution)  partial sum  Srivastava–Tomovski generalization of Mittag–Leffler function  subordination  differential equation  differential inclusion  Liouville–Caputotype fractional derivative  fractional integral  existence  fixed point  Bernoulli spiral  Grandi curves  Chebyshev polynomials  pseudoChebyshev polynomials  orthogonality property  symmetric  encryption  password  hash  cryptography  PBKDF  q–Bleimann–Butzer–Hahn operators  (p,q)integers  (p,q)Bernstein operators  (p,q)Bleimann–Butzer–Hahn operators  modulus of continuity  rate of approximation  Kfunctional  HurwitzLerch zeta function  generalized functions  analytic number theory  ?generalized HurwitzLerch zeta functions  derivative properties  series representation  basic hypergeometric functions  generating functions  qpolynomials  analytic functions  Mittag–Leffler functions  starlike functions  convex functions  Hardy space  vibrating string equation  initial conditions  spectral decomposition  regular solution  the uniqueness of the solution  the existence of a solution  analytic  ?convex function  starlike function  stronglystarlike function  subordination  q Sheffer–Appell polynomials  generating relations  determinant definition  recurrence relation  q Hermite–Bernoulli polynomials  q Hermite–Euler polynomials  q Hermite–Genocchi polynomials  Volterra integral equations  highly oscillatory Bessel kernel  Hermite interpolation  direct Hermite collocation method  piecewise Hermite collocation method  differential operator  qhypergeometric functions  meromorphic function  Mittag–Leffler function  Hadamard product  differential subordination  starlike functions  Bell numbers  radius estimate  (p, q)integers  Dunkl analogue  generating functions  generalization of exponential function  Szász operator  modulus of continuity  function spaces and their duals  distributions  tempered distributions  Schwartz testing function space  generalized functions  distribution space  wavelet transform of generalized functions  Fourier transform  analytic function  subordination  Dziok–Srivastava operator  nonlinear boundary value problem  nonlocal  multipoint  multistrip  existence  Ulam stability  functions of bounded boundary and bounded radius rotations  subordination  functions with positive real part  uniformly starlike and convex functions  analytic functions  univalent functions  starlike and qstarlike functions  qderivative (or qdifference) operator  sufficient conditions  distortion theorems  Janowski functions  analytic number theory  ?generalized Hurwitz–Lerch zeta functions  derivative properties  recurrence relations  integral representations  Mellin transform  natural transform  Adomian decomposition method  Caputo fractional derivative  generalized mittagleffler function  analytic functions  Hadamard product  starlike functions  qderivative (or qdifference) operator  Hankel determinant  qstarlike functions  fuzzy volterra integrodifferential equations  fuzzy general linear method  fuzzy differential equations  generalized Hukuhara differentiability  spectrum symmetry  DCT  MFCC  audio features  anuran calls  analytic functions  convex functions  starlike functions  strongly convex functions  strongly starlike functions  uniformly convex functions  Struve functions  truncatedexponential polynomials  monomiality principle  generating functions  Apostoltype polynomials and Apostoltype numbers  Bernoulli, Euler and Genocchi polynomials  Bernoulli, Euler, and Genocchi numbers  operational methods  summation formulas  symmetric identities  Euler numbers and polynomials  qEuler numbers and polynomials  HurwitzEuler eta function  multiple HurwitzEuler eta function  higher order qEuler numbers and polynomials  (p, q)Euler numbers and polynomials of higher order  symmetric identities  symmetry of the zero
Listing 1  3 of 3 
Sort by

2019 (3)