Search results: Found 3

Listing 1 - 3 of 3
Sort by
Trends in Neuroergonomics: A Comprehensive Overview

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452033 Year: Pages: 402 DOI: 10.3389/978-2-88945-203-3 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

This Research Topic is dedicated to Raja Parasuraman who unexpectedly passed on March 22nd 2015. Raja Parasuraman’s pioneering work led the emergence of Neuroergonomics as a new scientific field. He combined his research interests in the field of Neuroergonomics which he defined as the study of the human brain in relation to performance at work and everyday settings. Raja Parasuraman was a pioneer, a truly exceptional researcher and an extraordinary person. He made significant contributions to a number of disciplines, from human factors to cognitive neuroscience. His advice to young researchers was to be passionate in order to develop theory and knowledge that can guide the design of technologies and environments for people. His legacy, the field of Neuroergonomics, will live on in countless faculties and students whom he advised and inspired with unmatched humility throughout the whole of his distinguished career. Raja Parasuraman was an impressive human being, a very kind person, and an absolutely inspiring individual who will be remembered by everyone who had the chance to meet him. About this Research Topic Since the advent of neuroergonomics, significant progress has been made with respect to methodology and tools for the investigation of the brain and behavior at work. This is especially the case for neuroscientific methods where the availability of ambulatory hardware, wearable sensors and advanced data analyses allow for imaging of brain dynamics in humans in applied environments. Methods such as: electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and stimulation approaches like transcranial direct-currrent stimulation (tDCS) have made significant progress in both recording and altering brain activity while allowing full body movements outside laboratory environments. For neuroergonomics, the application of brain imaging in real-world scenarios is highly relevant. Traditionally, brain imaging experiments in human factors research tend to avoid active behavior for fear of artifacts and a contaminated data set that would provide limited insight into brain dynamics in real working environments. To overcome these problems new analyses approaches have to be developed that identify artifacts resulting from hostile recording environments and movement-related non-brain activity stemming from eye-, head, and full-body movements. The application of methodology from the field of Brain-Computer Interfacing (BCI) for neuroergonomics is one approach that has significant potential to enhance ambulatory monitoring and applied testing. Passive BCIs allow for assessing aspects of the user state online, such that systems can automatically adapt to their user. This neuroadaptive technology could lead to highly efficient working environments, to auto-adaptive experimental paradigms and to a continuous tracking of cognitive and affective aspects of the user state. Hence, deployment of portable neuroimaging technologies to real time settings could help assess cognitive and motivational states of personnel assigned to perform critical tasks. This Research Topic gathers submissions that cover new approaches in neuroergonomics. Different article type cover advanced neuroscience methods and neuroergonomics techniques as well as analysis approaches to investigate brain dynamics in working environments. The selection of papers provides insights into new neuroergonomic research approaches that demonstrate significant advances in brain imaging technologies that become more and more mobile, Moreover, a strong trend for new analyses approaches and paradigms investigating real work settings can be seen. Together, this unique collection of latest research papers provides a comprehensive overview on the latest developments in neuroergonomics.

Manipulative approaches to human brain dynamics

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194797 Year: Pages: 246 DOI: 10.3389/978-2-88919-479-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:33
License:

Loading...
Export citation

Choose an application

Abstract

In this EBook, we highlight how newly emerging techniques for non-invasive manipulation of the human brain, combined with simultaneous recordings of neural activity, contribute to the understanding of brain functions and neural dynamics in humans. A growing body of evidence indicates that the neural dynamics (e.g., oscillations, synchrony) are important in mediating information processing and networking for various functions in the human brain. Most of previous studies on human brain dynamics, however, show correlative relationships between brain functions and patterns of neural dynamics measured by imaging methods such as electroencephalography (EEG), magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In contrast, manipulative approaches by non-invasive brain stimulation (NIBS) have been developed and extensively used. These approaches include transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) such as transcranial direct current stimulation (tDCS), alternating current stimulation (tACS), and random noise stimulation (tRNS), which can directly manipulate neural dynamics in the intact human brain. Although the neural-correlate approach is a strong tool, we think that manipulative approaches have far greater potential to show causal roles of neural dynamics in human brain functions. There have been technical challenges with using manipulative methods together with imaging methods. However, thanks to recent technical developments, it has become possible to use combined methods such as TMS–EEG coregistration. We can now directly measure and manipulate neural dynamics and analyze functional consequences to show causal roles of neural dynamics in various brain functions. Moreover, these combined methods can probe brain excitability, plasticity and cortical networking associated with information processing in the intact human brain. The contributors to this EBook have succeeded in showcasing cutting-edge studies and demonstrate the huge impact of their approaches on many areas in human neuroscience and clinical applications.

Advances in Near Infrared Spectroscopy and Related Computational Methods

Authors: ---
ISBN: 9783039280520 9783039280537 Year: Pages: 496 DOI: 10.3390/books978-3-03928-053-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Analytical Chemistry
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

In the last few decades, near-infrared (NIR) spectroscopy has distinguished itself as one of the most rapidly advancing spectroscopic techniques. Mainly known as an analytical tool useful for sample characterization and content quantification, NIR spectroscopy is essential in various other fields, e.g. NIR imaging techniques in biophotonics, medical applications or used for characterization of food products. Its contribution in basic science and physical chemistry should be noted as well, e.g. in exploration of the nature of molecular vibrations or intermolecular interactions. One of the current development trends involves the miniaturization and simplification of instrumentation, creating prospects for the spread of NIR spectrometers at a consumer level in the form of smartphone attachments—a breakthrough not yet accomplished by any other analytical technique. A growing diversity in the related methods and applications has led to a dispersion of these contributions among disparate scientific communities. The aim of this Special Issue was to bring together the communities that may perceive NIR spectroscopy from different perspectives. It resulted in 30 contributions presenting the latest advances in the methodologies essential in near-infrared spectroscopy in a variety of applications.

Keywords

hyperspectral imaging --- variety discrimination --- Chrysanthemum --- deep convolutional neural network --- DNA --- FTIR spectroscopy --- rapid identification --- PLS-DA --- animal origin --- near-infrared hyperspectral imaging --- raisins --- support vector machine --- pixel-wise --- object-wise --- maize kernel --- hyperspectral imaging technology --- accelerated aging --- principal component analysis --- support vector machine model --- standard germination tests --- blackberries --- Rubus fructicosus --- phenolics --- carotenoids --- bioanalytical applications --- near infrared --- chemometrics --- VIS/NIR hyperspectral imaging --- corn seed --- classification --- freeze-damaged --- image processing --- imaging visualization --- wavelength selection --- NIR spectroscopy --- binary dragonfly algorithm --- ensemble learning --- quantitative analysis modeling --- NIR --- SCiO --- pocket-sized spectrometer --- cheese --- fat --- moisture --- multivariate data analysis --- Fourier-transform near-infrared spectroscopy --- glucose --- fructose --- dry matter --- partial least square regression --- Ewing sarcoma --- Fourier transform infrared spectroscopy --- FTIR --- chemotherapy --- bone cancer --- calibration transfer --- NIR spectroscopy --- PLS --- quantitative analysis model --- melamine --- FT-IR --- NIR spectroscopy --- quantum chemical calculation --- anharmonic calculation --- overtones --- combination bands --- near infrared spectroscopy --- Trichosanthis Fructus --- geographical origin --- chemometric techniques --- crude drugs --- prepared slices --- support vector machine-discriminant analysis --- near-infrared fluorescence --- fluorescent probes --- Zn(II) --- di-(2-picolyl)amine --- living cells --- cellular imaging --- near-infrared (NIR) spectroscopy --- calibration transfer --- affine invariance --- multivariate calibration --- partial least squares (PLS) --- NIR --- direct model transferability --- MicroNIR™ --- SVM --- hier-SVM --- SIMCA --- PLS-DA --- TreeBagger --- PLS --- calibration transfer --- agriculture --- photonics --- imaging --- spectral imaging --- spectroscopy --- handheld near-infrared spectroscopy --- pasta/sauce blends --- partial least squares calibration --- nutritional parameters --- bootstrapping soft shrinkage --- partial least squares --- extra virgin olive oil --- adulteration --- FT-NIR spectroscopy --- near-infrared spectroscopy --- ethanol --- anharmonic quantum mechanical calculations --- isotopic substitution --- overtones --- combinations bands --- seeds vitality --- rice seeds --- near-infrared spectroscopy --- hyperspectral image --- discriminant analysis --- near-infrared spectroscopy --- counter propagation artificial neural network --- detection --- auxiliary diagnosis --- BRAF V600E mutation --- colorectal cancer --- tissue --- paraffin-embedded --- deparaffinized --- stained --- ultra-high performance liquid chromatography --- Folin–Ciocalteu --- total hydroxycinnamic derivatives --- phytoextraction --- near-infrared spectroscopy --- origin traceability --- data fusion --- Paris polyphylla var. yunnanensis --- Fourier transform mid-infrared spectroscopy --- near-infrared spectroscopy --- aquaphotomics --- water --- light --- near infrared spectroscopy --- water-mirror approach --- perturbation --- biomeasurements --- biodiagnosis --- biomonitoring --- Vitis vinifera L. --- proximal sensing --- precision viticulture --- near infrared --- chemometrics --- non-destructive sensor --- NIRS --- osteopathy --- late preterm --- brain --- splanchnic --- Raman spectroscopy --- hyperspectral imaging --- analytical spectroscopy --- counterfeit and substandard pharmaceuticals --- DFT calculations --- chemometrics --- PLSR --- API --- lumefantrine --- artemether --- antimalarial tablets --- FT-NIR spectroscopy --- PLS-R --- water --- glucose --- test set validation --- RMSEP --- hyperspectral image processing --- perfusion measurements --- clinical classifications --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search