Search results: Found 2

Listing 1 - 2 of 2
Sort by
Siloxane-Based Polymers

Author:
ISBN: 9783038971252 / 9783038971269 Year: Pages: 188 DOI: 10.3390/books978-3-03897-126-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

fabrication --- multielectrode array (MEA) --- PDMS --- PDMS etching --- plateau-shaped electrode --- recessed electrode --- spinal cord signal recording --- underexposure --- organosilane --- quartz microcrystal --- encapsulant --- refractive index --- thermal conductivity --- poly(dimethylsiloxanes) --- surface modification --- nanosilica --- diethyl carbonate --- carbon content --- morphology --- coatings --- fillers --- hybrid hydrogel --- MAPOSS --- mechanical properties --- swelling --- drug release --- dental resin --- methacryl POSS --- shrinkage --- hardness --- scratch resistance --- ceramizable silicone rubber --- borate --- halloysite --- composite --- ceramizable mechanism --- polysiloxanes --- mortar --- basalt fibre --- roughness --- surface free energy --- poly(ethylene glycol) (PEG) --- hydrophilic --- non-releasable --- polydimethylsiloxane --- coatings --- cross-linking --- surface --- amphiphilic --- anti-bioadhesion --- hyperbranched poly(methylhydrosiloxanes) --- hydrolytic polycondensation --- 29Si-NMR --- topology of polysiloxane chains --- polyhedral oligomeric silsesquioxanes --- high molecular weight --- nanoparticles --- PDMS --- sugar templating process --- 3D porous network --- thermal stability --- TG-FTIR --- X-ray (Micro-CT) microtomography --- sol-gel --- hybrids --- chlorogenic acid --- bioactivity --- FTIR --- TG --- polysiloxanes --- theranostics --- drug delivery --- nanomedicine --- PDMS --- silicon --- ultraviolet (UV) curable coatings --- low surface energy materials --- fluorinated siloxane resin

Microscale Surface Tension and Its Applications

Authors: ---
ISBN: 9783039215645 / 9783039215652 Year: Pages: 240 DOI: 10.3390/books978-3-03921-565-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to:Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems. We expect novel as well as review contributions on all aspects of surface tension-based micro/nanoengineering. In line with Micromachines' policy, we also invite research proposals that introduce ideas for new applications, devices, or technologies.

Keywords

mist capillary self-alignment --- laser die transfer --- hydrophilic/superhydrophobic patterned surfaces --- microasssembly --- droplet transport --- microfluidics --- vibrations --- contact line oscillation --- asymmetric surfaces --- anisotropic ratchet conveyor --- surface tension --- capillary --- bearing --- wetting --- computational fluid dynamics --- droplet manipulation --- lab-on-a-chip --- microfluidics --- non-invasive control --- photochemical reaction --- photoresponsible surfactant --- surface tension --- two-phase flow --- wettability --- electrowetting --- actuation --- capillary pressure --- lab-on-a-chip --- Nasturtium leaf --- smart superhydrophobic surface --- hot drop --- condensation --- microtexture melting --- self-lubricating slippery surface --- wettability gradient --- electrosurgical scalpels --- anti-sticking --- soft tissue --- continuous-flow reactor --- mixing --- solutal Marangoni effect --- relaxation oscillations --- super-hydrophobic --- durable --- adhesion --- corrosive resistance --- droplet --- vibrations --- transport --- microfluidics --- self-cleaning surface --- superhydrophobic --- superhydrophilic --- superomniphobic --- microfluidics --- electrodynamic screen --- gecko setae --- micropipette-technique --- air-water surface --- oil-water interface --- soluble surfactant --- insoluble lipids --- “black lipid films” --- “droplet-interface-bilayers” --- equilibrium --- dynamic --- adsorption --- gas-microbubbles --- oil-microdroplets --- lung-surfactants --- nanoprecipitation --- microfluidics --- capillary gripper --- pick and place --- micromanufacturing --- two-photon polymerization --- stereolithography --- polydimethylsiloxane (PDMS) replication --- rigid gas permeable contact lenses --- wettability --- hydrophilic --- hydrophobic --- 355 nm UV laser --- surface treatment --- microstructure --- contact angle --- droplets --- liquid bridge --- microfabrication --- micromanipulation --- pick-and-place --- soft robotics --- surface tension --- wetting

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (2)


Year
From To Submit

2019 (2)