Search results: Found 2

Listing 1 - 2 of 2
Sort by
Lipid Signalling In Plant Development And Responses To Environmental Stresses

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199105 Year: Pages: 112 DOI: 10.3389/978-2-88919-910-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

In response to environmental stresses, or during development, plant cells will produce lipids that will act as intracellular or intercellular mediators. Glycerophospholipid and/or sphingolipid second messengers resulting from the action of lipid metabolizing enzymes (e.g. lipid-kinases or lipases) are commonly found within cells. The importance of such mediating lipids in plants has become increasingly apparent. Responses to biotic and abiotic stresses, and to plant hormones, all appear to involve and require lipid signals. Likewise, developmental processes, in particular polarized growth, seem also to involve signalling lipids. Amongst these lipids, phosphatidic acid (PA) has received the most attention. It can be produced by phospholipases D, but also by diacylglycerol kinases coupled to phospholipases C. Proteins that bind phosphatidic acid, and for which the activity is altered upon binding, have been identified. Furthermore, other lipids are also important in signalling processes. PA can be phosphorylated into diacylglycerol-pyrophosphate, and plants are one of the first biological models where the production of this lipid has been reported, and its implication in signal transduction have been demonstrated. PA can also be deacylated into lyso- phosphatidic acid. The phosphorylated phosphatidylinositols, i.e. the phosphoinositides, can act as substrate of phospholipases C, but are also mediating lipids per se, since proteins that bind them have been identified. Other important lipid mediators belong to the sphingolipid family such the phosphorylated phytosphingosine, or long-chain bases. Many questions remain unanswered concerning lipid signalling in plants. Understanding and discussing current knowledge on these mechanisms will provide insights into plant mechanisms in response to constraints, either developmental or environmental.

Arthropod Venom Components and Their Potential Usage

Authors: ---
ISBN: 9783039285402 9783039285419 Year: Pages: 404 DOI: 10.3390/books978-3-03928-541-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Public Health --- Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Thousands of arthropod species, ranging from arachnids (spiders and scorpions) to hymenopterans (ants, bees, and wasps) and myriapods (centipedes), are venomous and use their venoms for both defense and predation. These venoms are invariably harmful to humans, and some may cause serious injuries, e.g., those from scorpions, spiders, and wasps. Arthropods’ venoms are also known as rich sources of biologically active compounds and have attracted the attention of toxin researchers for years. In this century, venom component analysis has progressed considerable due to the advances in analytical techniques, in particular, mass spectrometry and next-generation deep (DNA and RNA) sequencing. As such, proteomic and peptidomic analyses using LC–MS have enabled the full analysis of venom components, revealing a variety of novel peptide and protein toxins sequences and scaffolds, potentially useful as pharmacological research tools and for the development of highly selective peptide ligands and therapeutic leads, like chlorotoxin. Due to their specificity for numerous ion-channel subtypes, including voltage- and ligand-gated ion channels, arthropod neurotoxins have been investigated to dissect and treat neurodegenerative diseases and control epileptic syndromes. This Special Issue collects information on such progress, encouraging contributions on the chemical and biological characterization of venom components, not only peptides and proteins, but also small molecules, their mechanisms of action, and the development of venom-derived peptide leads.

Keywords

ant --- venom --- mass spectrometry analysis --- pilosulin-like peptide --- phospholipases D --- metalloproteases --- Loxosceles spp. --- recombinant toxins --- hybrid immunogen --- neutralizing antibodies --- antivenoms --- LyeTxI-b --- Staphylococcus aureus --- keratitis --- AMP --- mastoparan --- Acinetobacter baumannii --- stent --- cantharidin --- blister beetle --- Berberomeloe majalis --- nematicide --- ixodicide --- antifeedant --- scorpion venom --- insecticidal peptide --- mass spectrometric analysis --- de novo sequencing --- Centruroides limpidus Karch --- proteome --- scorpion --- transcriptome --- venom toxicity --- brown spider --- venom --- Loxosceles --- toxins --- biotools --- drug targets --- novel therapeutics --- spider toxin --- directed disulfide bond formation --- Nav channel activity --- Nav1.7 --- pain target --- automated patch-clamp --- bee venom --- alternative treatment --- skin --- cutaneous disease --- mechanism --- chemotherapy --- cold allodynia --- mechanical allodynia --- melittin --- neuropathic pain --- oxaliplatin --- natural antibiotics --- piperidine heterocyclic amines --- industrial biotechnology --- LTQ Orbitrap Hybrid Mass Spectrometer --- myrmecology --- venom --- pain --- ants --- wasps --- bees --- Hymenoptera --- envenomation --- toxins --- peptides --- pharmacology --- Dinoponera quadriceps --- Formicidae --- Hymenoptera venom --- proteomics --- venom allergens --- ICK-like toxins --- melittin --- insect immune system --- apoptosis --- heart contractility --- Tenebrio molitor --- bee venom --- bioinformatics --- computational docking --- homology modelling --- ion channel structure --- protein–peptide interactions --- tertiapin --- venom peptides --- virtual screening --- small hive beetle --- solitary wasp --- venom --- antimicrobial peptide --- linear cationic ?-helical peptide --- amphipathic ?-helix structure --- channel-like pore-forming activity --- antimicrobial peptide --- venom --- arthropod --- malaria --- Chagas disease --- human African trypanosomiasis --- leishmaniasis --- toxoplasmosis --- venom peptides --- FMRF-amide --- insect neurotoxin --- protons --- pH regulation --- acid-sensing ion channels --- acid-gated currents --- chronic pain --- ICK peptide --- knottins --- NaV --- spider venom --- voltage-gated sodium channel --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search