Search results: Found 2

Listing 1 - 2 of 2
Sort by
Plant Responses to Biotic and Abiotic Stresses: Lessons from Cell Signaling

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453566 Year: Pages: 298 DOI: 10.3389/978-2-88945-356-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany --- Physiology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Facing stressful conditions imposed by their environment and affecting their growth and their development throughout their life cycle, plants must be able to perceive, to process and to translate different stimuli into adaptive responses. Understanding the organism-coordinated responses involves a fine description of the mechanisms occurring at the cellular and molecular level. A major challenge is also to understand how the large diversity of molecules identified as signals, sensors or effectors could drive a cell to the appropriate plant response and to finally cope with various environmental cues. In this Research Topic we aim to provide an overview of various signaling mechanisms or to present new molecular signals involved in stress response and to demonstrate how basic/fundamental research on cell signaling will help to understand stress responses at the whole plant level.

"One rotten apple spoils the whole barrel": The plant hormone ethylene, the small molecule and its complexity

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196234 Year: Pages: 132 DOI: 10.3389/978-2-88919-623-4 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

The gaseous molecule ethylene (C2H4), which is small in size and simple in structure, is a plant hormone most often associated with fruit ripening yet has a diversity of effects throughout the plant life cycle. While its agricultural effects were known even in ancient Egypt, the complexity of its mode of action and the broad spectrum of its effects and potential uses in plant physiology remain important scientific challenges today. In the last few decades, the biochemical pathway of ethylene production has been uncovered, ethylene perception and signaling have been molecularly dissected, ethylene-responsive transcription factors have been identified and numerous effects of ethylene have been described, ranging from water stress, development, senescence, reproduction plant-pathogen interactions, and of course, ripening. Thus ethylene is involved in plant development, in biotic and abiotic stress, and in reproduction. There is no stage in plant life that is not affected by ethylene, modulated by a complex and fascinating molecular machinery.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2017 (1)

2015 (1)