Search results: Found 4

Listing 1 - 4 of 4
Sort by
Regulation of Cell Fate Determination in Plants

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193240 Year: Pages: 84 DOI: 10.3389/978-2-88919-324-0 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Plants are made up of a large number of distinct cell types that originate from a single fertilized egg cell. How the diversity of cell types arise in appropriate places is one of the most fascinating and attractive research areas of plant biology. During the past several decades, due to the development of new molecular techniques and tools, advances in optical microscopy, and availability of whole genome information and mutants in the model plant Arabidopsis and other plants, great advances have been made in understanding the mechanisms involved in cell fate determination in plants. Multiple mechanisms are used to generate cellular diversity. Asymmetric cell division is one of the primary mechanisms. As an example, asymmetric cell division enables one stem cell to generate a stem cell daughter and a daughter with a distinct identity. Initially equivalent cells can also differentiate to generate different cell types. This mechanism has been clearly demonstrated in the formation of multiple cell types during epidermis development in the shoot and root. Cell fate determination is influenced by both intrinsic factors, i.e, developmental regulators, as well as extrinsic signals, i.e., environmental stimuli. By using model systems like stomata, trichome, root hair and shoot and root apical meristem cells, ligands, receptors and transcription factors have been found to regulate cell fate determination. However, the details of signaling cassettes responsible for cell fate determination remain largely unknown. Plants are made up of a large number of distinct cell types that originate from a single fertilized egg cell. How the diversity of cell types arise in appropriate places is one of the most fascinating and attractive research areas of plant biology. During the past several decades, due to the development of new molecular techniques and tools, advances in optical microscopy, and availability of whole genome information and mutants in the model plant Arabidopsis and other plants, great advances have been made in understanding the mechanisms involved in cell fate determination in plants. This research topic contains 12 collected articles, including 2 Opinion Articles, 5 Reviews, 4 Mini Reviews, and 1 Original Research Article. Hopefully, these articles will expand our understanding of the regulation of cell fate determination in plants.

Short Rotation Woody Crop Production Systems for Ecosystem Services and Phytotechnologies

Authors: --- --- ---
ISBN: 9783039215096 9783039215102 Year: Pages: 316 DOI: 10.3390/books978-3-03921-510-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Forestry
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

While international efforts in the development of short rotation woody crops (SRWCs) have historically focused on the production of biomass for bioenergy, biofuels, and bioproducts, research and deployment over the past decade has expanded to include broader objectives of achieving multiple ecosystem services. In particular, silvicultural prescriptions developed for SRWCs have been refined to include woody crop production systems for environmental benefits such as carbon sequestration, water quality and quantity, and soil health. In addition, current systems have been expanded beyond traditional fiber production to other environmental technologies that incorporate SRWCs as vital components for phytotechnologies, urban afforestation, ecological restoration, and mine reclamation. In this Special Issue of the journal Forests, we explore the broad range of current research dedicated to our topic: International Short Rotation Woody Crop Production Systems for Ecosystem Services and Phytotechnologies

Physiological Responses to Abiotic and Biotic Stress in Forest Trees

Authors: ---
ISBN: 9783039215140 9783039215157 Year: Pages: 294 DOI: 10.3390/books978-3-03921-515-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level.

Keywords

drought --- mid-term --- non-structural carbohydrate --- soluble sugar --- starch --- Pinus massoniana --- salinity --- Carpinus betulus --- morphological indices --- gas exchange --- osmotic adjustment substances --- antioxidant enzyme activity --- ion relationships --- Populus simonii Carr. (poplar) --- intrinsic water-use efficiency --- tree rings --- basal area increment --- long-term drought --- hydrophilic polymers --- Stockosorb --- Luquasorb --- Konjac glucomannan --- photosynthesis --- ion relation --- Fagus sylvatica L. --- Abies alba Mill. --- N nutrition --- mixed stands --- pure stands --- soil N --- water relations --- 24-epiBL application --- salt stress --- ion contents --- chloroplast ultrastructure --- photosynthesis --- Robinia pseudoacacia L. --- elevation gradient --- forest type --- growth --- leaf properties --- Pinus koraiensis Sieb. et Zucc. --- Heterobasidion parviporum --- Heterobasidion annosum --- Norway spruce --- disturbance --- water availability --- pathogen --- infection --- Carpinus turczaninowii --- salinity treatments --- ecophysiology --- photosynthetic responses --- organic osmolytes --- ion homeostasis --- antioxidant enzymes --- glutaredoxin --- subcellular localization --- expression --- tapping panel dryness --- defense response --- rubber tree --- Ca2+ signal --- drought stress --- living cell --- Moso Bamboo (Phyllostachys edulis) --- plasma membrane Ca2+ channels --- signal network --- Aleppo pine --- Greece --- photosynthesis --- water potential --- ?13C --- sap flow --- canopy conductance --- climate --- molecular cloning --- functional analysis --- TCP --- DELLA --- GA-signaling pathway --- Fraxinus mandshurica Rupr. --- wood formation --- abiotic stress --- nutrition --- gene regulation --- tree --- bamboo forest --- cold stress --- physiological response --- silicon fertilization --- plant tolerance --- reactive oxygen species --- antioxidant activity --- proline --- Populus euphratica --- salt stress --- salicylic acid --- malondialdehyde --- differentially expressed genes --- n/a

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search