Search results: Found 2

Listing 1 - 2 of 2
Sort by
Regulatory potential of post-translational modifications in bacteria

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196104 Year: Pages: 204 DOI: 10.3389/978-2-88919-610-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Post-translational modifications (PTMs) are widely employed by all living organisms to control the enzymatic activity, localization or stability of proteins on a much shorter time scale than the transcriptional control. In eukarya, global analyses consistently reveal that proteins are very extensively phosphorylated, acetylated and ubiquitylated. Glycosylation and methylation are also very common, and myriad other PTMs, most with a proven regulatory potential, are being discovered continuously. The emergent picture is that PTM sites on a single protein are not independent; modification of one residue often affects (positively or negatively) modification of other sites on the same protein. The best example of this complex behavior is the histone “bar-code” with very extensive cross-talk between phosphorylation, acetylation and methylation sites.Traditionally it was believed that large networks of PTMs exist only in complex eukaryal cells, which exploit them for coordination and fine-tuning of various cellular functions. PTMs have also been detected in bacteria, but the early examples focused on a few important regulatory events, based mainly on protein phosphorylation. The global importance (and abundance) of PTMs in bacterial physiology was systematically underestimated. In recent years, global studies have reported large datasets of phosphorylated, acetylated and glycosylated proteins in bacteria. Other modifications of bacterial proteins have been recently described: pupylation, methylation, sirtuin acetylation, lipidation, carboxylation and bacillithiolation. As the landscape of PTMs in bacterial cells is rapidly expanding, primarily due to advances of detection methods in mass spectrometry, our research field is adapting to comprehend the potential impact of these modifications on the cellular physiology. The field of protein phosphorylation, especially of the Ser/Thr/Tyr type, has been profoundly transformed. We have become aware that bacterial kinases phosphorylate many protein substrates and thus constitute regulatory nodes with potential for signal integration. They also engage in cross-talk and eukaryal-like mutual activation cascades. The regulatory potential of protein acetylation and glycosylation in bacteria is also rapidly emerging, and the cross-talk between acetylation and phosphorylation has been documented. This topic deals with the complexity of the PTM landscape in bacteria, and focus in particular on the physiological roles that PTMs play and methods to study them. The topic is associated to the 1st International Conference on Post-Translational Modifications in Bacteria (September 9-10, 2014, Göttingen, Germany).

Cell Signaling in Host-Pathogen Interactions: The Host Point of View

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454556 Year: Pages: 414 DOI: 10.3389/978-2-88945-455-6 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology --- Science (General) --- Microbiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

The ability of pathogens, such as parasites, bacteria, fungi and viruses to invade, persist and adapt in both invertebrate and vertebrate hosts is multifactorial and depends on both pathogen and host fitness. Communication between a pathogen and its host relies on a wide and dynamic array of molecular interactions. Through this constant communication most pathogens evolved to be relatively benign, whereas killing of its host by a pathogen represents a failure to adapt. Pathogens are lethal to their host when their interaction has not been long enough for adaptation. Evolution has selected conserved immune receptors that recognize signature patterns of pathogens as non-self elements and initiate host innate responses aimed at eradicating infection. Conversely, pathogens evolved mechanisms to evade immune recognition and subvert cytokine secretion in order to survive, replicate and cause disease. The cell signaling machinery is a critical component of the immune system that relays information from the receptors to the nucleus where transcription of key immune genes is activated. Host cells have developed signal transduction systems to maintain homeostasis with pathogens. Most cellular processes and cell signaling pathways are tightly regulated by protein phosphorylation in which protein kinases are key protagonists. Pathogens have developed multiple mechanisms to subvert important signal transduction pathways such as the mitogen activated protein kinase (MAPK) and the nuclear factor kB (NF-kB) pathways. Pathogens also secrete effectors that manipulate actin cytoskeleton and its regulators, hijack cell cycle machinery and alter vesicular trafficking. This research topic focuses on the cellular signaling mechanisms that are essential for host immunity and their subversion by pathogens.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2018 (1)

2015 (1)