Search results: Found 6

Listing 1 - 6 of 6
Sort by
Programming for Computations - Python: A Gentle Introduction to Numerical Simulations with Python

Authors: ---
Book Series: Texts in Computational Science and Engineering ISSN: 1611-0994 ISBN: 9783319324272 9783319324289 Volume: 15 Pages: 232 DOI: 10.1007/978-3-319-32428-9 Language: English
Publisher: Springer
Subject: Computer Science
Added to DOAB on : 2017-02-03 18:19:48
License:

Loading...
Export citation

Choose an application

Abstract

Numerical simulations;programming;Python

Python in Neuroscience

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196081 Year: Pages: 273 DOI: 10.3389/978-2-88919-608-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Python is rapidly becoming the de facto standard language for systems integration. Python has a large user and developer-base external to theneuroscience community, and a vast module library that facilitates rapid and maintainable development of complex and intricate systems. In this Research Topic, we highlight recent efforts to develop Python modules for the domain of neuroscience software and neuroinformatics: - simulators and simulator interfaces - data collection and analysis - sharing, re-use, storage and databasing of models and data - stimulus generation - parameter search and optimization - visualization - VLSI hardware interfacing. Moreover, we seek to provide a representative overview of existing mature Python modules for neuroscience and neuroinformatics, to demonstrate a critical mass and show that Python is an appropriate choice of interpreter interface for future neuroscience software development.

Finite Difference Computing with PDEs: A Modern Software Approach

Authors: ---
Book Series: Texts in Computational Science and Engineering ISSN: 1611-0994 / 2197-179X ISBN: 9783319554556 9783319554563 Year: Pages: 507 DOI: https://doi.org/10.1007/978-3-319-55456-3 Language: English
Publisher: Springer
Subject: Computer Science
Added to DOAB on : 2017-11-24 13:03:18
License:

Loading...
Export citation

Choose an application

Abstract

This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Volcanic Plumes.Impacts on the Atmosphere and Insights into Volcanic Processes

Authors: --- ---
ISBN: 9783038976288 Year: Pages: 252 DOI: 10.3390/books978-3-03897-629-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.

Open-Source Electronics Platforms

Author:
ISBN: 9783038979722 / 9783038979739 Year: Pages: 262 DOI: 10.3390/books978-3-03897-973-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.

Keywords

human-computer interface (HCI) --- electrooculogram (EOG) --- electromyogram (EMG) --- modified sliding window algorithm --- piecewise linear approximation (PLA) --- support vector regression --- eye tracking --- blockchain --- ontology --- context --- cyber-physical systems --- robotics --- interaction --- coalition --- individual management of livestock --- momentum data sensing --- remote sensing platform --- sensor networks --- technology convergence --- industry 4.0 --- distributed measurement systems --- automation networks --- node-RED --- cloud computing --- OPC UA --- hardware trojan taxonomy --- thermal imaging --- side channel analysis --- infrared --- FPGA --- Internet of Things --- wireless sensor networks --- Cloud of Things --- virtual sensor --- sensor detection --- smart cities --- Internet of Things --- Raspberry Pi --- BeagleBoard --- Arduino --- Internet of Things --- open hardware --- smart farming --- teaching robotics --- science teaching --- STEM --- robotic tool --- Python --- Raspberry Pi --- PiCamera --- vision system --- service learning --- robotics --- open platform --- automated vehicle --- EPICS --- open-source platform --- visual algorithms --- digital signal controllers --- embedded systems education --- dsPIC --- Java --- smart converter --- maximum power point tracking (MPPT) --- photovoltaic (PV) system --- Field Programmable Gate Array (FPGA) --- Digital Signal Processor (DSP) --- interleaved --- DC/DC converter --- distributed energy resource --- n/a

Marine Geomorphometry

Authors: --- ---
ISBN: 9783038979548 / 9783038979555 Year: Pages: 400 DOI: 10.3390/books978-3-03897-955-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Geomorphometry is the science of quantitative terrain characterization and analysis, and has traditionally focused on the investigation of terrestrial and planetary landscapes. However, applications of marine geomorphometry have now moved beyond the simple adoption of techniques developed for terrestrial studies, driven by the rise in the acquisition of high-resolution seafloor data and by the availability of user-friendly spatial analytical tools. Considering that the seafloor represents 71% of the surface of our planet, this is an important step towards understanding the Earth in its entirety.This volume is the first one dedicated to marine applications of geomorphometry. It showcases studies addressing the five steps of geomorphometry: sampling a surface (e.g., the seafloor), generating a Digital Terrain Model (DTM) from samples, preprocessing the DTM for subsequent analyses (e.g., correcting for errors and artifacts), deriving terrain attributes and/or extracting terrain features from the DTM, and using and explaining those terrain attributes and features in a given context. Throughout these studies, authors address a range of challenges and issues associated with applying geomorphometric techniques to the complex marine environment, including issues related to spatial scale, data quality, and linking seafloor topography with physical, geological, biological, and ecological processes. As marine geomorphometry becomes increasingly recognized as a sub-discipline of geomorphometry, this volume brings together a collection of research articles that reflect the types of studies that are helping to chart the course for the future of marine geomorphometry.

Keywords

bedforms --- forage fish --- Pacific sand lance --- sediment habitats --- bathymetry --- currents --- seabed mapping --- marine geology --- submarine topography --- marine geomorphology --- terrain analysis --- multibeam echosounder --- bathymetry --- DEM --- satellite imagery --- multi beam echosounder --- filter --- geomorphology --- coral reefs --- Acoustic applications --- object segmentation --- seafloor --- underwater acoustics --- Cretaceous --- Cenomanian–Turonian --- paleobathymetry --- paleoclimate --- paleoceanography --- reconstruction --- simulation --- shelf-slope-rise --- geomorphometry --- GIS --- spatial scale --- spatial analysis --- terrain analysis --- seafloor geomorphometry --- domes --- volcanoes --- digital elevation models (DEMs) --- Canary Basin --- Atlantic Ocean --- cold-water coral --- carbonate mound --- habitat mapping --- spatial prediction --- image segmentation --- geographic object-based image analysis --- random forest --- accuracy --- confidence --- global bathymetry --- Seabed 2030 --- Nippon Foundation/GEBCO --- seafloor mapping technologies --- seafloor mapping standards and protocols --- benthic habitats --- shelf morphology --- eastern Brazilian shelf --- geomorphometry --- terrain analysis --- bathymetry --- surface roughness --- benthic habitat mapping --- python --- geomorphology --- submerged glacial bedforms --- deglaciation --- sedimentation --- multibeam --- acoustic-seismic profiling --- swath geometry --- multibeam spatial resolution --- integration artefacts --- Multibeam bathymetry --- benthic habitat mapping --- multiscale --- Random Forests --- pockmarks --- automated-mapping --- ArcGIS --- Glaciated Margin --- North Sea --- Malin Basin --- Barents Sea --- bathymetry --- thalwegs --- canyons --- Alaska --- Bering Sea --- multibeam sonar --- carbonate banks --- semi-automated mapping --- polychaete --- Northwestern Australia --- Oceanic Shoals Australian Marine Park --- Bonaparte Basin --- Timor Sea --- bathymetry --- digital terrain analysis --- geomorphometry --- geomorphology --- habitat mapping --- marine remote sensing

Listing 1 - 6 of 6
Sort by
Narrow your search