Search results:
Found 8
Listing 1  8 of 8 
Sort by

Choose an application
With this graduatelevel primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field.In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the nonobservation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses.
elementary particles  quantum field theory  string theory
Choose an application
This open access textbook takes the reader stepbystep through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations. The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.
Physics  Mechanics  Mechanical engineering  Elementary particles (Physics)  Quantum field theory
Choose an application
Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the bigdata analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum manybody physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for nonspecialists on quantum physics to understand tensor network algorithms and the related mathematics.
Physics  Physics  Quantum physics  Quantum optics  Statistical physics  Machine learning  Elementary particles (Physics)  Quantum field theory
Choose an application
This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERNSpringer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the wellknown LandoltBoernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Particle Acceleration and Detection, Beam Physics  Measurement Science and Instrumentation  Elementary Particles, Quantum Field Theory  Nuclear Physics, Heavy Ions, Hadrons  Accelerator Physics  Nuclear Physics  Physics of particle detectors  beam optics  accelerator diagnostics  Highenergy physics handbook  beam diagnostics  Accelerators and beams  Standard model of particle physics  Fundamental particles and forces  Accelerator design  Open Access  Particle & highenergy physics  Scientific standards, measurement etc  Quantum physics (quantum mechanics & quantum field theory)  Atomic & molecular physics
Choose an application
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and nonaccelerator based experiments. It also covers applications in medicine and life sciences. A joint CERNSpringer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the wellknown LandoltBoernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Particle Acceleration and Detection, Beam Physics  Measurement Science and Instrumentation  Elementary Particles, Quantum Field Theory  Nuclear Physics, Heavy Ions, Hadrons  Nuclear Energy  Accelerator Physics  Nuclear Physics  Highenergy physics handbook  Standard model of particle physics  Fundamental particles and forces  Physics of particle detectors  Accelerators and beams  Open Access  Particle & highenergy physics  Scientific standards, measurement etc  Quantum physics (quantum mechanics & quantum field theory)  Atomic & molecular physics  Nuclear power & engineering
Choose an application
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavyion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERNSpringer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the wellknown LandoltBoernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Elementary Particles, Quantum Field Theory  Nuclear Physics, Heavy Ions, Hadrons  Particle Acceleration and Detection, Beam Physics  Quantum Field Theories, String Theory  Measurement Science and Instrumentation  Nuclear Physics  Accelerator Physics  Theoretical, Mathematical and Computational Physics  Standard Model of particle physics  High energy physics handbook  Collider physics  Fundamental particles and forces  HEP reference work  experimental particle physics  LandoltBoernstein elementary particles  accelerator physics experiments  physics of particle detectors  Open Access  Quantum physics (quantum mechanics & quantum field theory)  Atomic & molecular physics  Particle & highenergy physics  Statistical physics  Scientific standards, measurement etc
Choose an application
The development of mathematical techniques, combined with new possibilities of computational simulation, have greatly broadened the study of nonlinear lattices, a theme among the most refined and interdisciplinaryoriented in the field of mathematical physics. This Special Issue mainly focuses on stateoftheart advancements concerning the many facets of nonlinear lattices, from the theoretical ones to more applied ones. The nonlinear and discrete systems play a key role in all ranges of physical experience, from macrophenomena to condensed matter, up to some models of space discrete spacetime.
Choose an application
Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeperlevel"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de BroglieBohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeperlevel questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and nonclassical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.
quantum foundations  nonlocality  retrocausality  Bell’s theorem  Bohmian mechanics  quantum theory  surrealistic trajectories  Bell inequality  quantum mechanics  generalized Lagrangian paths  covariant quantum gravity  emergent spacetime  Gaussianlike solutions  entropy and time evolution  resonances in quantum systems  the Friedrichs model  complex entropy.  Bell’s theorem  the causal arrow of time  retrocausality  superdeterminism  toymodels  quantum ontology  subquantum dynamics  microconstituents  emergent spacetime  emergent quantum gravity  entropic gravity  black hole thermodynamics  SternGerlach  trajectories  spin  Bell theorem  fractal geometry  padic metric  singular limit  gravity  conspiracy  free will  number theory  quantum potential  Feynman paths  weak values  Bohm theory  nohiddenvariables theorems  observables  measurement problem  Bohmian mechanics  primitive ontology  Retrocausation  weak values  Stochastic Electrodynamics  quantum mechanics  decoherence  interpretations  pilotwave theory  Bohmian mechanics  Born rule statistics  measurement problem  quantum thermodynamics  strong coupling  operator thermodynamic functions  quantum theory  de Broglie–Bohm theory  contextuality  atomsurface scattering  bohmian mechanics  matterwave optics  diffraction  vortical dynamics  Schrödinger equation  de Broglie–Bohm theory  nonequilibrium thermodynamics  zeropoint field  de Broglie–Bohm interpretation of quantum mechanics  pilot wave  interiorboundary condition  ultraviolet divergence  quantum field theory  Aharonov–Bohm effect  physical ontology  nomology  interpretation  gauge freedom  Canonical Presentation  relational space  relational interpretation of quantum mechanics  measurement problem  nonlocality  discrete calculus  iterant  commutator  diffusion constant  LeviCivita connection  curvature tensor  constraints  Kilmister equation  Bianchi identity  stochastic differential equations  Monte Carlo simulations  Burgers equation  Langevin equation  fractional velocity  interpretations of quantum mechanics  David Bohm  mind–body problem  quantum holism  fundamental irreversibility  spacetime fluctuations  spontaneous state reduction  Poincaré recurrence  symplectic camel  quantum mechanics  Hamiltonian  molecule interference  matterwaves  metrology  magnetic deflectometry  photochemistry  past of the photon  Mach–Zehnder interferometer  Dove prism  photon trajectory  weak measurement  transition probability amplitude  atomic metastable states  Bell’s theorem  Bohmian mechanics  nonlocality  many interacting worlds  wavefunction nodes  bouncing oil droplets  stochastic quantum dynamics  de Broglie–Bohm theory  quantum nonequilibrium  Htheorem  ergodicity  ontological quantum mechanics  objective nonsignaling constraint  quantum inaccessibility  epistemic agent  emergent quantum state  selfreferential dynamics  dynamical chaos  computational irreducibility  undecidable dynamics  Turing incomputability  quantum ontology  nonlocality  timesymmetry  retrocausality  quantum causality  conscious agent  emergent quantum mechanics  Bohmian mechanics  de BroglieBohm theory
Listing 1  8 of 8 
Sort by
