Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Plant polyamines in stress and development

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193035 Year: Pages: 140 DOI: 10.3389/978-2-88919-303-5 Language: English
Publisher: Frontiers Media SA
Subject: Chemistry (General) --- Botany --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Polyamines are small aliphatic polycations which have been involved in key stress and developmental processes in plants. In the recent years, compelling genetic and molecular evidences point to polyamines as essential metabolites required for resistance to drought, freezing, salinity, oxidative stress among other type of abiotic and biotic stresses. In addition to their role as stress-protective compounds, polyamines participate in key developmental processes mediated by specific signaling pathways or in cross-regulation with other plant hormones. Our Research Topic aims to integrate the multiple stress and developmental regulatory functions of polyamines in plants under a genetic, molecular and evolutionary perspective with special focus on signaling networks, mechanisms of action and metabolism regulation.

Melatonin in Plants

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453115 Year: Pages: 297 DOI: 10.3389/978-2-88945-311-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

This topic focuses on distribution, synthesis, metabolism, and the in vivo roles of melatonin in plants, with 1 editorial, 3 reviews, 21 original research studies and 1 corrigendum.

Redox and Metabolic Circuits in Cancer

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456352 Year: Pages: 183 DOI: 10.3389/978-2-88945-635-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Living cells require a constant supply of energy for the orchestration of a variety of biological processes in fluctuating environmental conditions. In heterotrophic organisms, energy mainly derives from the oxidation of carbohydrates and lipids, whose chemical bonds breakdown allows electrons to generate ATP and to provide reducing equivalents needed to restore the antioxidant systems and prevent from damage induced by reactive oxygen and nitric oxide (NO)-derived species (ROS and RNS). Studies of the last two decades have highlighted that cancer cells reprogram the metabolic circuitries in order to sustain their high growth rate, invade other tissues, and escape death. Therefore, this broad metabolic reorganization is mandatory for neoplastic growth, allowing the generation of adequate amounts of ATP and metabolites, as well as the optimization of redox homeostasis in the changeable environmental conditions of the tumor mass. Among these, ROS, as well as NO and RNS, which are produced at high extent in the tumor microenvironment or intracellularly, have been demonstrated acting as positive modulators of cell growth and frequently associated with malignant phenotype. Metabolic changes are also emerging as primary drivers of neoplastic onset and growth, and alterations of mitochondrial metabolism and homeostasis are emerging as pivotal in driving tumorigenesis.Targeting the metabolic rewiring, as well as affecting the balance between production and scavenging of ROS and NO-derived species, which underpin cancer growth, opens the possibility of finding selective and effective anti-neoplastic approaches, and new compounds affecting metabolic and/or redox adaptation of cancer cells are emerging as promising chemotherapeutic tools.In this Research Topic we have elaborated on all these aspects and provided our contribution to this increasingly growing field of research with new results, opinions and general overviews about the extraordinary plasticity of cancer cells to change metabolism and redox homeostasis in order to overcome the adverse conditions and sustain their “individualistic” behavior under a teleonomic viewpoint.

Chloroplast

Author:
ISBN: 9783038973362 / 9783038973379 Year: Pages: 474 DOI: 10.3390/books978-3-03897-337-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Botany
Added to DOAB on : 2019-02-18 09:52:18
License:

Loading...
Export citation

Choose an application

Abstract

Chloroplasts are at the front line of many advancements in molecular biology, ranging from evolutionary biology to the mechanism of energy transduction, also including stress responses and programmed leaf death. In addition to the relevance of basic knowledge, advances are unveiling promising insights to improve plant productivity, disease resistance, and environmental control. The production of secondary metabolites and proteins by transformed chloroplasts adds further excitement to applied investigations on chloroplasts.The comparison of the sequences of the chloroplast DNA of different plants provides valuable information on gene content, reordering in the circular chloroplast DNA, and mutational genetic-derive, relevant to the evolution of the chloroplast. Increasing facilities for intense genome sequencing have prompted many laboratories to focus on the chloroplast DNA. Reflecting these efforts, more than half of the articles in this book deal with functional or evolutionary investigations based on sequence analyses of chloroplast DNA. Additional topics treated in the issue include post-transcriptional control, the processing of nuclear encoded preproteins of chloroplasts, the response of photosynthetic machinery to water deficit, turn-over of chloroplast proteins, mechanism of chloroplast division, and chloroplast movements.

Ca2+ and Ca2+-interlocked Membrane Guanylate Cyclase Modulation

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195060 Year: Pages: 185 DOI: 10.3389/978-2-88919-506-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

The tale of cyclic GMP has been astonishing. Having overcome an initial disbelief, cyclic GMP has risen to its present eminence as a premium cellular signal transduction messenger of not only hormonal extracellular but also of the intracellular signals. This research topic focuses on the pathways and functions of membrane guanylate cyclases in different tissues of the body and their interplay with intracellular sensory signals where in many cases, cyclic GMP along with Ca2+ have taken on roles as synarchic co-messengers.

Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450824 Year: Pages: 88 DOI: 10.3389/978-2-88945-082-4 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

The general process of lipid peroxidation consists of three stages: initiation, propagation, and termination. The initiation phase of lipid peroxidation includes hydrogen atom abstraction. Several species can abstract the first hydrogen atom and include the radicals: hydroxyl, alkoxyl, peroxyl, and possibly HO* 2. The membrane lipids, mainly phospholipids, containing polyunsaturated fatty acids are predominantly susceptible to peroxidation because abstraction from a methylene group of a hydrogen atom, which contains only one electron, leaves at the back an unpaired electron on the carbon. The initial reaction of *OH with polyunsaturated fatty acids produces a lipid radical (L*), which in turn reacts with molecular oxygen to form a lipid hydroperoxide (LOOH). Further, the LOOH formed can suffer reductive cleavage by reduced metals, such as Fe++, producing lipid alkoxyl radical (LO*). Peroxidation of lipids can disturb the assembly of the membrane, causing changes in fluidity and permeability, alterations of ion transport and inhibition of metabolic processes. In addition, LOOH can break down, frequently in the presence of reduced metals or ascorbate, to reactive aldehyde products, including malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (4-HHE) and acrolein. Lipid peroxidation is one of the major outcomes of free radical-mediated injury to tissue mainly because it can greatly alter the physicochemical properties of membrane lipid bilayers, resulting in severe cellular dysfunction. In addition, a variety of lipid by-products are produced as a consequence of lipid peroxidation, some of which can exert beneficial biological effects under normal physiological conditions. Intensive research performed over the last decades have also revealed that by-products of lipid peroxidation are also involved in cellular signalling and transduction pathways under physiological conditions, and regulate a variety of cellular functions, including normal aging. In the present collection of articles, both aspects (adverse and benefitial) of lipid peroxidation are illustrated in different biological paradigms. We expect this eBook may encourage readers to expand the current knowledge on the complexity of physiological and pathophysiological roles of lipid peroxidation.

Antioxidants and Second Messengers of Free Radicals

Author:
ISBN: 9783038975335 / 9783038975342 Year: Pages: 194 DOI: 10.3390/books978-3-03897-534-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Medicine (General) --- Chemistry (General)
Added to DOAB on : 2019-01-17 09:35:49
License:

Loading...
Export citation

Choose an application

Abstract

The history of science can teach modern men that our understanding of life is to a great extent based on the accuracy of the analytical methods that we use and, on our readiness to oppose dogmatic opinions, which are based on outdated methods and black/white approaches to the major questions raised by mankind in the past. The recent decades have brought a lot of new insights into the fundamentals of the active principles of reactive oxygen species that are necessary for living cells, but which also cause dangerous pathophysiological processes. Accordingly, although they were previously considered to be the most undesired toxic compounds generated as the final products of the oxidative degradation of lipids, reactive aldehydes are now considered to play important roles both in health and in major diseases. Represented mostly by 4-hydroxynonenal (HNE), a substance discovered only fifty years ago, reactive aldehydes are the focus of research not only because of their toxicity but also because of their positive effects regulating the most important metabolic processes such as growth of living cells or the death of cells. Better understanding the interactions between reactive aldehydes and natural or synthetic antioxidant substances might eventually help us to better monitor, prevent and control modern diseases, thus building pillars for the development of the modern, multidisciplinary life sciences and integrative medicine of the 21st century.

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 / 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Development and Application of Herbal Medicine from Marine Origin

Authors: --- ---
ISBN: 9783039212217 / 9783039212224 Year: Pages: 140 DOI: 10.3390/books978-3-03921-222-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Marine herbal medicine generally refers to the use of marine plants as original materials to develop crude drugs, or for other medical purposes. The term ‘marine plants’ usually denotes macroalgae grown between intertidal and subintertidal zones, including Chlorophyta, Phaeophyta, and Rhodophyta. Considerable progress has been made in the field of biomedical research into marine microalgae and microorganisms in the past decade. As the most important source of fundamental products in the world, marine plants have a very important role in biomedical research. Furthermore, worldwide studies have consistently demonstrated that many crude drugs derived from marine plants contain novel ingredients that may benefit health or can be used in the treatment of diseases; some have been developed into health foods, and some even into drugs. It is expected that there are many substances of marine plant origin that will have medical applications in terms of improving human health and are awaiting discovery.In this Special Issue, entitled “Development and Application of Herbal Medicine of Marine Origin”, we will provide a platform for researchers to publish biomedical studies on substances of marine plant origin. We welcome submissions from scientists and academics from across the world.

Silver Nano/microparticles: Modification and Applications

Authors: ---
ISBN: 9783039211777 / 9783039211784 Year: Pages: 206 DOI: 10.3390/books978-3-03921-178-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Nano/micro-size particles are widely applied in various fields. Among the various particles, silver particles are considered among the most prominent nanomaterials in the biomedical and industrial sectors because of their favorable physical, chemical, and biological characteristics. Thus, numerous studies have been conducted to evaluate their properties and utilize them in various applications, such as diagnostics, anti-bacterial and anti-cancer therapeutics, and optoelectronics. The properties of silver particles are strongly influenced by their size, morphological shape, and surface characteristics, which can be modified by diverse synthetic methods, reducing agents, and stabilizers. This Special Issue provides a range of original contributions detailing the synthesis, modification, properties, and applications of silver materials. Nine outstanding papers describing examples of the most recent advances in silver nano/microparticles are included. Silver nano/micro-size particles have many potential advantages as next-generation materials in various areas, including nanomedicine. This Special Issue might be helpful to understand the value of silver particles in the biomedical and industrial fields

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search