Search results: Found 28

Listing 1 - 10 of 28 << page
of 3
>>
Sort by
Neural circuits underlying emotion and motivation: Insights from optogenetics and pharmacogenetics

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195343 Year: Pages: 172 DOI: 10.3389/978-2-88919-534-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Application of optogenetic and pharmacogenetic tools to study the neural circuits underlying emotional valence, feeding, arousal and motivated behaviors has provided crucial insights into brain function. Expression of light sensitive proteins into specific neurons and subsequent stimulation by light (optogenetics) to control neuronal activity or expression of designer receptors exclusively activated by designer drugs (DREADD) in specific neuronal populations with subsequent activation or suppression of neuronal activity by an otherwise inert ligand (pharmacogenetics) provides control over defined elements of neural circuits. These novel tools have provided a more in depth understanding into several questions about brain function. These include: • Regulation of sleep-wake transition by the interaction of hypocretin neurons of lateral hypothalamus and nor adrenergic neurons of the locus coruleaus • Regulation of feeding by AGRP and POMC neurons in arcuate nucleus of the hypothalamus • Place preference and positive reinforcement by activation of DA neuron of VTA • Place aversion by activation of VTA GABA and lateral habenula neurons • Opposing influences on reinforcement by activation of D1 and D2 expressing medium spiny neurons of dorsal striatum and nucleus accumbens The list still grows... From cell type specific manipulations to signaling properties in the cell (Dietz et al 2012) with unprecedented temporal resolution, these tools revolutionize the exploration of pathways/connectivity. Recent years also witnessed the extension of applying these tools from studying emotional valence and motivated behavior to reactivation of memory. c-fos based genetic approaches allowed us to integrate light sensitive opsins or DREADD receptor into specific neurons that are activated by certain learning events (for example fear) (Garner et al 2012; Liu et al 2012). In this Research Topic, we welcome researchers to contribute original research articles, review articles, methods and commentary on topics utilizing optogenetic and pharmacogenetic tools to study the neural circuits underlying emotional valence, motivation, reinforcement and memory. We believe the Research Topic will shine light on various questions we have about brain function by using novel optogenetic and pharmacogenetic tools and will hopefully inspire ongoing research to overcome the hurdles of using these tools to advance clinical applications.

Thoughts on grammaticalization

Author:
Book Series: Classics in Linguistics ISBN: 9783946234074 9783946234067 9783946234050 Year: Pages: 214+xiii DOI: 10.26530/OAPEN_603353 Language: English
Publisher: Language Science Press
Subject: Linguistics
Added to DOAB on : 2015-12-10 14:26:39
License:

Loading...
Export citation

Choose an application

Abstract

After a short review of the history of research, the work introduces and delimits the concepts related to grammaticalization. It then provides extensive exemplification of grammaticalization phenomena in diverse languages, ordered by grammatical domains such as the verbal, pronominal and nominal sphere and clause level relations. The final chapter presents a theory of grammaticalization which is based on the autonomy of the linguistic sign with respect to the paradigmatic and syntagmatic axes. This is the basis of the structural parameters that constitute grammaticalization. They are operationalized to the point of rendering degrees of grammaticalization measurable.

Value and Reward Based Learning in Neurobots

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194315 Year: Pages: 158 DOI: 10.3389/978-2-88919-431-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Organisms are equipped with value systems that signal the salience of environmental cues to their nervous system, causing a change in the nervous system that results in modification of their behavior. These systems are necessary for an organism to adapt its behavior when an important environmental event occurs. A value system constitutes a basic assumption of what is good and bad for an agent. These value systems have been effectively used in robotic systems to shape behavior. For example, many robots have used models of the dopaminergic system to reinforce behavior that leads to rewards. Other modulatory systems that shape behavior are acetylcholine’s effect on attention, norepinephrine’s effect on vigilance, and serotonin’s effect on impulsiveness, mood, and risk. Moreover, hormonal systems such as oxytocin and its effect on trust constitute as a value system. This book presents current research involving neurobiologically inspired robots whose behavior is: 1) Shaped by value and reward learning, 2) adapted through interaction with the environment, and 3) shaped by extracting value from the environment.

Reward- and aversion-related processing in the brain: translational evidence for separate and shared circuits

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198368 Year: Pages: 181 DOI: 10.3389/978-2-88919-836-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Affective brain circuits underpin our moods and emotions. Appetitive and aversive stimuli from our exteroceptive and interoceptive worlds play a key role in the activity of these circuits, but we still do not know precisely how to characterize these so-called reward-related and aversion-related systems. Moreover, we do we yet understand how they interact anatomically or functionally. The aim of the current project was to gather some translational evidence to help clarify the role of such circuits. A multi-dimensional problem in its own right, the book contains 14 works from authors exploring these questions at many levels, from the cellular to the cognitive-behavioral, and from both experimental and conceptual viewpoints. The editorial which introduces the book provides brief summaries of each perspective (Hayes, Northoff, Greenshaw, 2015). While questions of how to accurately define affect- and emotion-related concepts at the psychological level are far from answered, here we have attempted to provide some insight into the brain-based underpinnings of such processes. The near future will undoubtedly involve making new inroads and will require the joint efforts of behavioral, brain-based, and philosophical perspectives to do so.

Intelligent Business Process Optimization for the Service Industry

Author:
ISBN: 9783866444546 Year: Pages: 310 p. DOI: 10.5445/KSP/1000014466 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

The company's sustainable competitive advantage derives from its capacity to create value for customers and to adapt the operational practices to changing situations. Business processes are the heart of each company. Therefore process excellence has become a key issue. This book introduces a novel approach focusing on the autonomous optimization of business processes by applying sophisticated machine learning techniques such as Relational Reinforcement Learning and Particle Swarm Optimization.

Intrinsic motivations and open-ended development in animals, humans, and robots

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193721 Year: Pages: 350 DOI: 10.3389/978-2-88919-372-1 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General) --- Psychology
Added to DOAB on : 2015-11-19 16:29:12
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Research Topic for Frontiers in Psychology under the section of Cognitive Science and Frontiers in Neurorobotics is to present state-of-the-art research, whether theoretical, empirical, or computational investigations, on open-ended development driven by intrinsic motivations. The topic will address questions such as: How do motivations drive learning? How are complex skills built up from a foundation of simpler competencies? What are the neural and computational bases for intrinsically motivated learning? What is the contribution of intrinsic motivations to wider cognition? Autonomous development and lifelong open-ended learning are hallmarks of intelligence. Higher mammals, and especially humans, engage in activities that do not appear to directly serve the goals of survival, reproduction, or material advantage. Rather, a large part of their activity is intrinsically motivated - behavior driven by curiosity, play, interest in novel stimuli and surprising events, autonomous goal-setting, and the pleasure of acquiring new competencies. This allows the cumulative acquisition of knowledge and skills that can later be used to accomplish fitness-enhancing goals. Intrinsic motivations continue during adulthood, and in humans artistic creativity, scientific discovery, and subjective well-being owe much to them. The study of intrinsically motivated behavior has a long history in psychological and ethological research, which is now being reinvigorated by perspectives from neuroscience, artificial intelligence and computer science. For example, recent neuroscientific research is discovering how neuromodulators like dopamine and noradrenaline relate not only to extrinsic rewards but also to novel and surprising events, how brain areas such as the superior colliculus and the hippocampus are involved in the perception and processing of events, novel stimuli, and novel associations of stimuli, and how violations of predictions and expectations influence learning and motivation. Computational approaches are characterizing the space of possible reinforcement learning algorithms and their augmentation by intrinsic reinforcements of different kinds. Research in robotics and machine learning is yielding systems with increasing autonomy and capacity for self-improvement: artificial systems with motivations that are similar to those of real organisms and support prolonged autonomous learning. Computational research on intrinsic motivation is being complemented by, and closely interacting with, research that aims to build hierarchical architectures capable of acquiring, storing, and exploiting the knowledge and skills acquired through intrinsically motivated learning. Now is an important moment in the study of intrinsically motivated open-ended development, requiring contributions and integration across a large number of fields within the cognitive sciences. This Research Topic aims to contribute to this effort by welcoming papers carried out with ethological, psychological, neuroscientific and computational approaches, as well as research that cuts across disciplines and approaches.

Oxytocin's routes in social behavior: Into the 21st century

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196968 Year: Pages: 132 DOI: 10.3389/978-2-88919-696-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Our brain is endowed with an incredible capacity to be social, to trust, to cooperate, to be altruistic, to feel empathy and love. Nevertheless, the biological underpinnings of such behaviors remain partially hardwired. Seminal research in rodents has provided important insights on the identification of specific genes in modulating social behaviors, in particular, the arginine vasopressin receptor and the oxytocin receptor genes. These genes are involved in regulating a wide range of social behaviors, mother-infant interactions, social recognition, aggression and socio-sexual behavior. Remarkably, we now know that these genes contribute to social behavior in a broad range of species from voles to humans. Indeed, advances in human non-invasive neuroimaging techniques and genetics have enabled scientists to begin to elucidate the neurobiological basis of the complexity of human social behaviors using "pharmacological fMRI" and "imaging genetics". Over the past few years, there has been a strong interest focused on the role of oxytocin in modulating human social behaviors with translational relevance for understanding neuropsychiatric disorders, such as autism, schizophrenia and depression, in which deficits in social perception and social recognition are key phenotypes. The convergence of this interdisciplinary research is beginning to reveal the complex nature of oxytocin’s actions. For instance, the way that oxytocin does influence social functioning is highly related to individual differences in social experiences, but also to the inter-individual variability in the receptor distribution of this molecule in the brain. Remarkably, despite the increasing evidence that oxytocin has a key role in regulating human social behavior, we still lack of knowledge on the core mechanisms of action of this molecule. Understanding its fundamental actions is a crucial need in order to target optimal therapeutic strategies for human social disorders. The originality of this Research Topic stands on its translational focus on bridging the gap between fundamental knowledge acquired from oxytocin research in voles and monkeys and recent clinical investigations in humans. For instance, what are the key animal findings that can import further knowledge on the mechanisms of actions of this molecule in humans? What are the key experiences that can be performed in the animal model in order to answer significant science gaps in the treatment of neuropsychiatric disorders? Hence, within this Research Topic, we will review the current state of the field, identify where the gaps in knowledge are, and propose directions for future research. This issue will begin with a comparative review that examines the role of this peptide in diverse animal models, which highlights the adaptive value of oxytocin’s function across multiple species. Then, a series of reviews will examine the role of oxytocin in voles, primates, and humans with an eye toward revealing commonalities in the underlying brain circuits mediating oxytocin’s effects on social behavior. Next, there will be a translational review highlighting the evidence for oxytocin’s role in clinical applications in psychopathology. Hence, via the continuum of basic to translational research areas, we will try to address the important gaps in our understanding of the neurobiological routes of social cognition and the mechanisms of action of the neuropeptides that guide our behaviors and decisions.

Individual Differences: From Neurobiological Bases to New Insight on Approach and Avoidance Behavior

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197156 Year: Pages: 110 DOI: 10.3389/978-2-88919-715-6 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

The superordinate division of emotions is distributed along a bipolar dimension of affective valence, from approaching rewarding situations to avoiding punitive situations. Avoiding and approaching behaviors determine the disposition to the primary emotions of fear and attachment and the behavioral responses to the environmental stimuli of danger, novelty and reward. Approach or avoidance behaviors are associated with the brain pathways controlling cognitive and attentional function, reward sensitivity and emotional expression, involving prefrontal cortex, amygdala, striatum and cerebellum. Individual differences in approach and avoidance behavior might be modulated by normal variance in the level of functioning of different neurotransmitter systems, such as dopaminergic, serotoninergic, noradrenergic and endocannabinoid systems as well as many peptides such as corticotropin releasing hormone. These substances act at various central target areas to increase intensity of appetitive or defensive motivation. Physiologically, personality temperaments of approach and avoidance are viewed as instigators of propensity. They produce immediate affective, cognitive and behavioral inclinations in response to stimuli and orient individuals across domains and situations in a consistent fashion. Although the action undoubtedly emerges directly from these temperamental proclivities, ultimate behavioral outcomes are often a function of the integration among goal pursuit, self-regulation, and temperament trait. Defective coping strategies to aversive or rewarding stimuli characterize the patho-physiology of anxiety- and stress-related disorders or compulsive and addiction behaviors, respectively. Individuals with neuropsychiatric symptoms such as depression, suicidal behavior, bipolar mania, schizophrenia, substance use disorders, pathological gambling and anxiety disorders have scores which fall at the extreme tails of the normal distribution for a specific temperamental trait. The present Research Topic on the individual differences in emotional and motivational processing emphasizes the link between neuronal pattern and behavioral expression. The Topic includes experimental and clinical researches addressing the individual differences related to approach and avoidance and their behavioral characterization, structural and neurochemical profiles, synaptic connections, and receptor expressions. Studies are organized in a framework that puts in evidence the phenotypic expression and neurobiological patterns characterizing the individual differences and their biological variance.

Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochleistungsimpuls- und Mikrowellentechnik ISSN: 21922764 ISBN: 9783731504672 Year: Volume: 8 Pages: XIII, 231 p. DOI: 10.5445/KSP/1000051503 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

In this work, an innovative real-time microwave control approach is proposed, to improve the temperature homogeneity under microwave heating. Multiple adaptive or intelligent control structures have been developed, including the model predictive control, neural network control and reinforcement learning control methods. Experimental results prove that these advanced control methods can effectively reduce the final temperature derivations and improve the temperature homogeneity.

AI based Robot Safe Learning and Control

Authors: --- --- --- --- et al.
ISBN: 9789811555039 Year: Pages: 127 DOI: 10.1007/978-981-15-5503-9 Language: English
Publisher: Springer Nature
Subject: Agriculture (General) --- Computer Science
Added to DOAB on : 2020-06-16 23:57:53
License:

Loading...
Export citation

Choose an application

Abstract

This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities.

Listing 1 - 10 of 28 << page
of 3
>>
Sort by