Search results: Found 29

Listing 1 - 10 of 29 << page
of 3
>>
Sort by
DNA helicases: expression, functions and clinical implications

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195756 Year: Pages: 78 DOI: 10.3389/978-2-88919-575-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2015-10-30 16:33:44
License:

Loading...
Export citation

Choose an application

Abstract

Helicases are the proteins that bind to double- or single-stranded DNA and/or RNA chains to unwind higher order structures, usually consuming energy from the hydrolysis of ATP molecules. The biological roles of helicases are associated with a variety of DNA and/or RNA metabolisms, including DNA-replication, -repair, -recombination, RNA processing, and transcription. Dysfunctions of helicases cause various diseases, such as xeroderma pigmentosum (XP), premature aging syndrome, cancer and immunodeficiency, in humans. Moreover, recent genetic analyses revealed that mutations in helicase-encoding genes are frequently found in patients of specific diseases. Some helicases regulate cellular senescence by controlling integrity of genomes, and others play a role in neuromuscular functions presumably by modulating processing of mRNAs. However, the molecular mechanisms of how helicases are regulated in order to maintain our health are not yet fully understood. In this research topic, we will focus on the expression and functions of helicases and their encoding genes, reviewing recent research progresses that provide new insights into development of clinical and pharmaceutical treatments targeting helicases.

Keywords

Aging --- Cancer --- DNA Repair --- helicases --- Telomere

Shipbuilding and Ship Repair Workers around the World

Authors: --- ---
ISBN: 9789462981157 Year: DOI: 10.5117/9789462981157 Language: Undetermined
Publisher: Amsterdam University Press
Subject: Economics
Added to DOAB on : 2017-03-14 11:01:13
License:

Loading...
Export citation

Choose an application

Abstract

Maritime trade is the backbone of the world’s economy. Around ninety percent of all goods are transported by ship, and since World War II, shipbuilding has undergone major changes in response to new commercial pressures and opportunities. Early British dominance, for example, was later undermined in the 1950s by competition from the Japanese, who have since been overtaken by South Korea and, most recently, China. The case studies in this volume trace these and other important developments in the shipbuilding and ship repair industries, as well as workers’ responses to these historic transformations.

Dual role of microglia in health and disease: pushing the balance towards repair

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194926 Year: Pages: 101 DOI: 10.3389/978-2-88919-492-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

Microglial cells play a vital role in the innate immune response occurring in the Central Nervous System (CNS). Under physiologic conditions, microglia dynamically patrol the brain parenchyma and participate in the remodeling of active neuronal circuits. Accordingly, microglia can boost synaptic plasticity by removing apoptotic cells and by phagocytizing axon terminals and dendritic spines that form inappropriate neural connections. Upon brain and spinal cord injury or infection, microglia act as the first line of immune defense by promoting the clearance of damaged cells or infectious agents and by releasing neurotrophins and/ or proneurogenic factors that support neuronal survival and regeneration.Recently, two main pathways were suggested for microglia activation upon stimuli. Classical activation is induced by Toll-like receptor agonists and Th1 cytokines and polarizes cells to an M1 state, mainly leading to the release of TNF-alpha, IL-6 and nitric oxide and to grave neural damage. Alternative activation is mediated by Th2 cytokines and polarizes cells to an M2a state inducing the release of antiinflammatory factors. These findings have further fueled the discussion on whether microglia has a detrimental or beneficial action (M1 or M2-associated phenotypes, respectively) in the diseased or injured CNS and, more importantly, on whether we can shift the balance to a positive outcome.Although microglia and macrophages share several common features, upon M1 and M2 polarizing conditions, they are believed to develop distinct phenotypic and functional properties which translate into different patterns of activity. Moreover, microglia/macrophages seem to have developed a tightly organized system of maintenance of CNS homeostasis, since cells found in different structures have different morphology and specific function (e.g. meningeal macrophages, perivascular macrophages, choroid plexus macrophages). Nevertheless, though substantial work has been devoted to microglia function, consensus around their exact origin, their role during development, as well as the exact nature of their interaction with other cells of the CNS has not been met.This issue discusses how microglial cells sustain neuronal activity and plasticity in the healthy CNS as well as the cellular and molecular mechanisms developed by microglia in response to injury and disease. Understanding the mechanisms involved in microglia actions will enforce the development of new strategies to promote an efficient CNS repair by committing microglia towards neuronal survival and regeneration.

Molecular mechanisms of cellular stress responses in cancer and their therapeutic implications

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194964 Year: Pages: 159 DOI: 10.3389/978-2-88919-496-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

In response to stress, cells can activate a myriad of signalling pathways to bring about a specific cellular outcome, including cell cycle arrest, DNA repair, senescence and apoptosis. This response is pivotal for tumour suppression as all of these outcomes result in restriction of the growth and/or elimination of damaged and pre-malignant cells. Thus, a large number of anti-cancer agents target specific components of stress response signalling pathways with the aim of causing tumour regression by stimulating cell death. However, the efficacy of these agents is often impaired due to mutations in genes that are involved in these stress-responsive signalling pathways and instead the oncogenic potential of a cell is increased leading to the initiation and/or progression of tumourigenesis. Moreover, these genetic defects can increase or contribute to resistance to chemotherapeutic agents and/or radiotherapy. Modulating the outcome of cellular stress responses towards cell death in tumour cells without affecting surrounding normal cells is thus one of the ultimate aims in the development of new cancer therapeutics. To achieve this aim, a detailed understanding of cellular stress response pathways and their aberrations in cancer is required.This Research topic aims to reflect the broadness and complexity of this important area of cancer research.

Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair and Replication in Plants

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198207 Year: Pages: 129 DOI: 10.3389/978-2-88919-820-7 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Environmental stresses and metabolic by-products can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. As a consequence, plant growth and productivity are irreversibly compromised. To overcome genotoxic injury, plants have evolved complex strategies relying on a highly efficient repair machinery that responds to sophisticated damage perception/signaling networks. The DNA damage signaling network contains several key components: DNA damage sensors, signal transducers, mediators, and effectors. Most of these components are common to other eukaryotes but some features are unique to the plant kingdom. ATM and ATR are well-conserved members of PIKK family, which amplify and transduce signals to downstream effectors. ATM primarily responds to DNA double strand breaks while ATR responds to various forms of DNA damage. The signals from the activated transducer kinases are transmitted to the downstream cell-cycle regulators, such as CHK1, CHK2, and p53 in many eukaryotes. However, plants have no homologue of CHK1, CHK2 nor p53. The finding of Arabidopsis transcription factor SOG1 that seems functionally but not structurally similar to p53 suggests that plants have developed unique cell cycle regulation mechanism. The double strand break repair, recombination repair, postreplication repair, and lesion bypass, have been investigated in several plants. The DNA double strand break, a most critical damage for organisms are repaired non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Damage on template DNA makes replication stall, which is processed by translesion synthesis (TLS) or error-free postreplication repair (PPR) pathway. Deletion of the error-prone TLS polymerase reduces mutation frequencies, suggesting PPR maintains the stalled replication fork when TLS is not available. Unveiling the regulation networks among these multiple pathways would be the next challenge to be completed. Some intriguing issues have been disclosed such as the cross-talk between DNA repair, senescence and pathogen response and the involvement of non-coding RNAs in global genome stability. Several studies have highlighted the essential contribution of chromatin remodeling in DNA repair. DNA damage sensing, signaling and repair have been investigated in relation to environmental stresses, seed quality issues, mutation breeding in both model and crop plants and all these studies strengthen the idea that components of the plant response to genotoxic stress might represent tools to improve stress tolerance and field performance. This focus issue gives researchers the opportunity to gather and interact by providing Mini-Reviews, Commentaries, Opinions, Original Research and Method articles which describe the most recent advances and future perspectives in the field of DNA damage sensing, signaling and repair in plants. A comprehensive overview of the current progresses dealing with the genotoxic stress response in plants will be provided looking at cellular and molecular level with multidisciplinary approaches. This will hopefully bring together valuable information for both plant biotechnologists and breeders.

Cancer-associated defects in the DNA damage response: drivers for malignant transformation and potential therapeutic targets

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199495 Year: Pages: 107 DOI: 10.3389/978-2-88919-949-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

For this eBook, and the associated Research Topic in Frontiers in Genetics, entitled: ‘Cancer-associated defects in the DNA damage response: drivers for malignant transformation and potential therapeutic targets’ we have selected 10 papers that each discusses important, yet distinct aspects of the response to DNA damage in normal cells and cancer cells. Using an evolutionary conserved signaling network called the ‘DNA damage response (DDR)’ cells maintain the integrity of their genome, and thus safeguard cellular functioning and the ability to create viably progeny. Initially, the DDR appeared to consist of few linear kinase-driven pathways. However, research over the past decades in model organisms, as well as in the human system has revealed that the DDR is a complex signaling network, wired by multiple parallel pathways and displaying extensive crosstalk. Besides phosphorylation, multiple other post-translational modifications, including ubiquitination and sumoylation, are involved to achieve chromatin remodeling and initiation of DNA repair. Also, rather than being a cell-intrinsic phenomenon, we increasingly appreciate that cell-cell communication is involved. The recognition and repair of DNA damage is essential to maintain normal physiology. Multiple pathological conditions have been attributed to defective DNA repair, most notably accelerated aging, neurodegeneration and cancer. In the context of cancer, through repair of DNA damage or elimination of irreparably damaged cells, the DDR clearly has a tumor-suppressive role. Indeed, many tumor cells show partially inactivated DDR signaling, which allows proliferation in the context of DNA damage-inducing oncogenes. Simultaneously, loss of specific DDR signaling nodes creates a specific dependence of tumor cells on their remaining DDR components, and thus creates therapeutic opportunities. Especially in the context of cancer treatment, numerous targeted agents are under investigation, either to potentiate the cytotoxic effects of chemo-radiotherapy, or to induce synthetic lethality with cancer-specific alterations, with the treatment of BRCA1/2 mutant cancers with PARP1 inhibitors as a prototype example. We have selected four review articles that provide insight into the key components and the wiring of the DDR and DNA repair. Torgovnick and Schumacher review the involvement of DNA repair in the initiation and treatment of cancer, Brinkmann et al., describe the involvement of ubiquitination in DNA damage signaling and Jaiswal and Lindqvist discuss how cell-extrinsic signaling participates in communication of DNA damage to neighboring cells. In addition, Shatneyeva and colleagues review the connection between the cellular response to DNA damage and escape from immune surveillance. Concerning the therapeutic application of targeting the DDR and DNA repair, three articles were included. Krajewska and van Vugt review the wiring of homologous recombination and how this offers therapeutic opportunities. Additionally, Knittel and colleagues describe how genetic loss of the central DDR component ATM in chronic lymphocytic leukemia can be exploited therapeutically by targeting certain parallel DNA repair pathways. Syljuasen and colleagues report on how targeting of the DDR can be used as a therapeutic strategy in lung cancer. Finally, three chapters describe newly identified regulators of the cellular response to DNA damage. Von Morgen et al. describe the R2TP complex, Lezzi and Fanciluuli review the involvement of Che-1/AATF in the DDR, and Ohms and co-authors describe how retrotransposons are at the basis of increased genomic instability. Altogether, these articles describe how defective responses to DNA damage underlie disease - and especially in the context of cancer -can be exploited to better treat disease.

Wounds and Wound Repair in Medieval Culture

Authors: ---
Book Series: Explorations in Medieval Culture ISBN: 9789004306455 Year: Pages: 645 DOI: 10.26530/OAPEN_606734 Language: English
Publisher: Brill Grant: Wellcome Trust - 097469
Subject: Medicine (General) --- History --- Languages and Literatures --- History of arts
Added to DOAB on : 2016-04-22 11:01:18
License:

Loading...
Export citation

Choose an application

Abstract

The spectacle of the wounded body figured prominently in the Middle Ages, from images of Christ’s wounds on the cross, to the ripped and torn bodies of tortured saints who miraculously heal through divine intervention, to graphic accounts of battlefield and tournament wounds—evidence of which survives in the archaeological record—and literary episodes of fatal (or not so fatal) wounds. This volume offers a comprehensive look at the complexity of wounding and wound repair in medieval literature and culture, bringing together essays from a wide range of sources and disciplines including arms and armaments, military history, medical history, literature, art history, hagiography, and archaeology across medieval and early modern Europe. Contributors are Stephen Atkinson, Debby Banham, Albrecht Classen, Joshua Easterling, Charlene M. Eska, Carmel Ferragud, M.R. Geldof, Elina Gertsman, Barbara A. Goodman, Máire Johnson, Rachel E. Kellett, Ilana Krug, Virginia Langum, Michael Livingston, Iain A. MacInnes, Timothy May, Vibeke Olson, Salvador Ryan, William Sayers, Patricia Skinner, Alicia Spencer-Hall, Wendy J. Turner, Christine Voth, and Robert C. Woosnam-Savage.

Grappling with the Multifaceted World of the DNA Damage Response

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450572 Year: Pages: 306 DOI: 10.3389/978-2-88945-057-2 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.

Visible Prowess?: Reading Men’s Head and Face Wounds in Early Medieval Europe to 1000 CE (Book chapter)

Book title: Wounds and Wound Repair in Medieval Culture

Authors: ---
Book Series: Explorations in Medieval Culture ISBN: 9789004292796 9789004306455 Year: Pages: 645 Language: English
Publisher: Brill Grant: Wellcome Trust - 097469
Subject: Medicine (General) --- History --- Languages and Literatures --- History of arts
Added to DOAB on : 2018-06-22 11:01:03
License:

Loading...
Export citation

Choose an application

Abstract

The spectacle of the wounded body figured prominently in the Middle Ages, from images of Christ’s wounds on the cross, to the ripped and torn bodies of tortured saints who miraculously heal through divine intervention, to graphic accounts of battlefield and tournament wounds—evidence of which survives in the archaeological record—and literary episodes of fatal (or not so fatal) wounds. This volume offers a comprehensive look at the complexity of wounding and wound repair in medieval literature and culture, bringing together essays from a wide range of sources and disciplines including arms and armaments, military history, medical history, literature, art history, hagiography, and archaeology across medieval and early modern Europe. Contributors are Stephen Atkinson, Debby Banham, Albrecht Classen, Joshua Easterling, Charlene M. Eska, Carmel Ferragud, M.R. Geldof, Elina Gertsman, Barbara A. Goodman, Máire Johnson, Rachel E. Kellett, Ilana Krug, Virginia Langum, Michael Livingston, Iain A. MacInnes, Timothy May, Vibeke Olson, Salvador Ryan, William Sayers, Patricia Skinner, Alicia Spencer-Hall, Wendy J. Turner, Christine Voth, and Robert C. Woosnam-Savage.

Chemically-Induced DNA Damage, Mutagenesis, and Cancer

Authors: ---
ISBN: 9783038971290 9783038971306 Year: Pages: X, 264 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-08-27 13:43:27
License:

Loading...
Export citation

Choose an application

Abstract

Human cancers frequently arise from exposure to chemicals, although radiation, oxidation, and genetic factors play critical roles as well. DNA damage by these agents in a cell is an important first step in the process of carcinogenesis. DNA repair processes have evolved to repair these damages. However, the replication of damaged DNA may occur frequently prior to repair, resulting in gene mutations and the generation of altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle give rise to a clonal cell population with an advantage in proliferation. The complex process of carcinogenesis includes many such events, but has been generally considered to be comprised of the three main stages known as initiation, promotion, and progression, which ultimately give rise to the induction of human cancer. The articles published in this book entitled “Chemically-Induced DNA Damage, Mutagenesis, and Cancer” provide an overview on the topic of the “consequence of DNA damage” in the context of human cancer with their challenges and highlights.

Listing 1 - 10 of 29 << page
of 3
>>
Sort by