Search results: Found 5

Listing 1 - 5 of 5
Sort by
The Retro-Futurism of Cuteness

Authors: ---
ISBN: 9781947447288 9781947447295 Year: Pages: 268 DOI: 10.21983/P3.0188.1.00 Language: English
Publisher: punctum books
Subject: Languages and Literatures
Added to DOAB on : 2019-06-12 09:24:32
License:

Loading...
Export citation

Choose an application

Abstract

Is it possible to conceive of a Hello Kitty Middle Ages or a Tickle Me Elmo Renaissance? The Oxford English Dictionary dates the first reference to “cute” in the sense of “attractive, pretty, charming” to 1834. More recently, Sianne Ngai has offered a critical overview of the cuteness of the twentieth-century avant-garde within the context of consumer culture. But if cuteness can get under the skin, what kinds of surfaces does it best infiltrate, particularly in the framework of historical forms, events, and objects that traditionally have been read as emergences around “big” aesthetics of formal symmetries, high affects, and resemblances? The Retrofuturism of Cuteness seeks to undo the temporal strictures surrounding aesthetic and affective categories, to displace a strict focus on commodification and cuteness, and to interrogate how cuteness as a minor aesthetics can refocus our perceptions and readings of both premodern and modern media, literature, and culture. Taking seriously the retro and the futuristic temporalities of cuteness, this volume puts in conversation projects that have unearthed remnants of a “cult of cute”—positioned historically and critically in between transitions into secularization, capitalist frameworks of commodification, and the enchantment of objects—and those that have investigated the uncanny haunting of earlier aesthetics in future-oriented modes of cuteness.

Distributed Energy Storage Devices in Smart Grids

Authors: --- ---
ISBN: 9783039284344 / 9783039284351 Year: Pages: 148 DOI: 10.3390/books978-3-03928-435-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Energy storage systems have been recognized as viable solutions for implementing the smart grid paradigm, but have created challenges in terms of load levelling, integrating renewable and intermittent sources, voltage and frequency regulation, grid resiliency, improving power quality and reliability, reducing energy import during peak demand periods, and so on. In particular, distributed energy storage addresses a wide range of the above potential issues, and it is gaining attention from customers, utilities, and regulators. Distributed energy storage has considerable potential for reducing costs and improving the quality of electric services. However, installation costs and lifespan are the main drawbacks to the wide diffusion of this technology. In this context, a serious challenge is the adoption of new techniques and strategies for the optimal planning, control, and management of grids that include distributed energy storage devices. Regulatory guidance and proactive policies are urgently needed to ensure a smooth rollout of this technology. This book collects recent contributions of methodologies applied to the integration of distributed energy storage devices in smart power systems. Several areas of research (optimal siting and sizing of energy storage systems, adaption of energy storage systems to load leveling and harmonic compensation, integration for electric vehicles, and optimal control systems) are investigated in the contributions collected in this book.

Energy Storage and Management for Electric Vehicles

Authors: --- ---
ISBN: 9783039218622 9783039218639 Year: Pages: 238 DOI: 10.3390/books978-3-03921-863-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

This Special Edition of Energies on “Energy Storage and Management for Electric Vehicles” draws together a collection of research papers that critically evaluates key areas of innovation and novelty when designing and managing the high-voltage battery system within an electrified powertrain. The addressed topics include design optimisation, mathematical modelling, control engineering, thermal management, and component sizing.

Keywords

zinc–nickel single-flow battery --- equivalent circuit model --- self-discharge --- dynamic flow rate optimization --- genetic algorithm --- hybrid power system --- electric vehicle --- rule-based optimal strategy --- dynamic programming approach --- thermal modelling --- thermal behaviour --- lithium titanate oxide batteries --- optimal control --- supercapacitors --- batteries --- fuel cell --- hybrid vehicle --- battery degradation --- battery energy storage system --- charging scheme --- efficiency --- electric vehicle --- linear programming --- lithium ion battery --- operating expenses --- residential battery storage --- vehicle-to-building --- supercapacitor models --- parameter estimation --- ECE15 --- HPPC --- Simulink --- Simscape --- Matlab --- Identification --- regenerative energy --- timetable optimization --- energy storage system --- ?-constraint method --- improved artificial bee colony --- lithium-ion battery --- equivalent circuit model --- recursive least square --- adaptive forgetting factor --- parameter identification --- energy storage ageing and degradation --- life cycle assessment --- second-life energy storage applications --- Li-Sulfur batteries --- lithium-ion battery --- cell sorting --- multi-parameters sorting --- principal component analysis --- self-organizing maps clustering --- battery charging --- cycle-life --- state-of-health (SOH) --- battery cycle-life extension --- nonlinear battery model --- state of charge estimation --- lithium-ion battery --- Lipschitz nonlinear system --- Luenberger observer

Batteries and Supercapacitors Aging

Authors: ---
ISBN: 9783039287147 / 9783039287154 Year: Pages: 214 DOI: 10.3390/books978-3-03928-715-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.

Keywords

battery --- operative dependability --- selection algorithm --- capacitance --- state-of-charge monitoring --- self-discharge --- supercapacitor --- aging --- lithium-ion capacitor --- aging model --- langmuir isotherm --- lifetime prediction --- aging mechanisms --- calendar aging --- floating aging --- autonomous devices --- lead-acid batteries --- Petri nets --- second life battery --- lithium-ion --- electrical characterization --- state-of-health (SOH) --- partial coulometric counter --- lithium-ion --- NMC --- aging --- ampere-hour throughput --- incremental capacity analysis --- accelerated ageing --- battery management system --- battery management system (BMS) --- calendar ageing --- cycling ageing --- electric vehicle --- embedded algorithm --- incremental capacity analysis --- incremental capacity analysis (ICA) --- lithium-ion battery --- lithium iron phosphate --- LFP --- LiFePO4 --- remaining capacity --- state of health (SoH) --- incremental capacity analysis --- lithium-ion --- electric vehicles --- driving cycles --- cell degradation --- lithium-ion --- batteries --- ageing --- post-mortem analysis --- lithium-ion battery --- lamination --- electrochemical impedance spectroscopy --- fast-charging capability --- lifetime --- abuse test --- lithium-ion capacitor --- safety --- temperature --- thermal runaway --- battery life testing --- capacitance --- state-of-charge determination --- state-of-health --- aging --- impedance spectroscopy --- pseudo-charge --- Li-Ion battery --- Ni-rich cathode --- degradation --- cathode-electrolyte interphase --- electro mobility --- n/a

Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Listing 1 - 5 of 5
Sort by
Narrow your search