Search results: Found 4

Listing 1 - 4 of 4
Sort by
Statistical Mechanics of Nonequilbrium Liquids

Authors: ---
ISBN: 9781921313233 Year: DOI: 10.26530/OAPEN_459733 Language: English
Publisher: ANU Press
Subject: Science (General)
Added to DOAB on : 2012-06-14 11:46:24
License: ANU Press

Loading...
Export citation

Choose an application

Abstract

During the 1980’s there were many developments regarding the nonequilibrium statistical mechanics of dense classical atomic fluids. These developments have had a major impact on the computer simulation methods used to model nonequilibrium fluids. The present volume is, in part, an attempt to provide a pedagogical discussion of the statistical mechanical justification of these algorithms. There is a symbiotic relationship between theoretical nonequilibrium statistical mechanics on the one hand and the theory and practice of computer simulation on the other. Sometimes, the initiative for progress has been with the pragmatic requirements of computer simulation and at other times, the initiative has been with the fundamental theory of nonequilibrium processes. This book summarises progress in this field up to 1990.

Thermodynamics and Statistical Mechanics of Small Systems

Authors: --- ---
ISBN: 9783038970576 9783038970583 Year: Pages: 334 DOI: 10.3390/books978-3-03897-058-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General)
Added to DOAB on : 2018-09-25 10:51:00
License:

Loading...
Export citation

Choose an application

Abstract

A challenging frontier in modern statistical physics concerns systems with a small number of degrees of freedom, far from the thermodynamic limit. Beyond the general interest in the foundation of statistical mechanics, the relevance of this subject is due to the recent increase of resolution in the observation and manipulation of biological and man-made objects at micro- and nano-scales. A peculiar feature of small systems is the role played by fluctuations, which cannot be neglected and are responsible for many non-trivial behaviors. The study of fluctuations of thermodynamic quantities, such as energy or entropy, goes back to Einstein, Onsager, and Kubo; more recently, interest in this matter has grown with the establishment of new fluctuation–dissipation relations, and of so-called stochastic thermodynamics. This turning point has received a strong impulse from the study of systems that are far from the thermodynamic equilibrium, due to very long relaxation times, as in disordered systems, or due to the presence of external forcing and dissipation, as in granular or active matter. Applications of the thermodynamic and statistical mechanics of small systems range from molecular biology to micro-mechanics, including models of nano-transport, Brownian motors, and (living or artificial) self-propelled organisms.

New Trends in Statistical Physics of Complex Systems

Author:
ISBN: 9783038974697 / 9783038974703 Year: Pages: 202 DOI: 10.3390/books978-3-03897-470-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General)
Added to DOAB on : 2019-01-28 09:04:46
License:

Loading...
Export citation

Choose an application

Abstract

A topical research activity in statistical physics concerns the study of complex and disordered systems. Generally, these systems are characterized by an elevated level of interconnection and interaction between the parts so that they give rise to a rich structure in the phase space that self-organizes under the control of internal non-linear dynamics. These emergent collective dynamics confer new behaviours to the whole system that are no longer the direct consequence of the properties of the single parts, but rather characterize the whole system as a new entity with its own features, giving rise to the birth of new phenomenologies. As is highlighted in this collection of papers, the methodologies of statistical physics have become very promising in understanding these new phenomena. This volume groups together 12 research works showing the use of typical tools developed within the framework of statistical mechanics, in non-linear kinetic and information geometry, to investigate emerging features in complex physical and physical-like systems.A topical research activity in statistical physics concerns the study of complex and disordered systems. Generally, these systems are characterized by an elevated level of interconnection and interaction between the parts so that they give rise to a rich structure in the phase space that self-organizes under the control of internal non-linear dynamics. These emergent collective dynamics confer new behaviours to the whole system that are no longer the direct consequence of the properties of the single parts, but rather characterize the whole system as a new entity with its own features, giving rise to the birth of new phenomenologies. As is highlighted in this collection of papers, the methodologies of statistical physics have become very promising in understanding these new phenomena. This volume groups together 12 research works showing the use of typical tools developed within the framework of statistical mechanics, in non-linear kinetic and information geometry, to investigate emerging features in complex physical and physical-like systems.

Intermittency and Self-Organisation in Turbulence and Statistical Mechanics

Author:
ISBN: 9783039211081 / 9783039211098 Year: Pages: 298 DOI: 10.3390/books978-3-03921-109-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions are responsible for inevitably complex dynamics in strongly non-equilibrium systems, a proper understanding of which remains a main challenge in classical physics. As a remarkable consequence of multi-scale interaction, a quasi-equilibrium state (the so-called self-organisation) can however be maintained. This special issue aims to present different theories of statistical mechanics to understand this challenging multiscale problem in turbulence. The 14 contributions to this Special issue focus on the various aspects of intermittency, coherent structures, self-organisation, bifurcation and nonlocality. Given the ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids (channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow around a high-speed train, solar wind and industrial application.

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)

ANU Press (1)


License

CC by-nc-nd (3)

ANU Press (1)


Language

english (3)

eng (1)


Year
From To Submit

2019 (2)

2018 (1)

2007 (1)