Search results: Found 24

Listing 1 - 10 of 24 << page
of 3
>>
Sort by
Influenza Virus Vaccines and Immunotherapies

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198115 Year: Pages: 185 DOI: 10.3389/978-2-88919-811-5 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Influenza virus infections lead to thousands of deaths worldwide annually and billions of dollars economic burden. Despite continuing advances in our understanding of the immune evasion mechanism, the disease remains one of the foremost threat for human being. Traditional vaccines (attenuated and inactivated) mainly provide protection by inducing virus neutralizing antibodies, targeting ever changing surface antigens: Haemagultinin (HA) and Neuraminidase (NA). Due to genetic shift and immune selection pressure, prevalence of circulating influenza virus subtypes changes every year. Therefore, mismatch between circulating strain and vaccine strain can critically affect the success rate of these conventional flu vaccines, and requires continuous monitoring of circulating influenza virus subtypes and change in the vaccine formulations accordingly. The collective limitations of existing flu vaccines urgently call for the development of a novel universal vaccines that might provide the required protective immunity to a range of influenza virus subtypes. New approaches are being investigated mainly targeting conserved regions of flu proteins. Some of these approaches include universally conserved epitopes of HA, nucleoprotein (NP), capsid protein (M1) and ion channel protein (M2) that induced strong immune responses in animal models. Some attention and progress appears to be focused on vaccines based on the M2 ectodomain (M2e) employing a variety of constructs, adjuvants and delivery systems, including M2e-hepatitis B core antigen, flagellin constructs, and virus-like particles (VLP). Animal studies with these M2e candidate vaccines demonstrated that these vaccine candidates can prevent severe illness and death but not infection, which may pose difficulties in both the evaluation of clinical efficacy and approval by the regulatory authorities. VLP vaccines appear to be promising, but still are mostly limited to animal studies. The discovery and development of new and improved vaccines have been greatly facilitated by the application of new technologies. The use of nucleic acid-based vaccines, to combine the benefits of in-situ expression of antigens with the safety of inactivated and subunit vaccines, has been a key advancement. Upon their discovery more than 20 years ago, nucleic acid vaccines promised to be a safe and effective mean to mimic immunization with a live organism vaccine, particularly for induction of T cell immunity. In addition, the manufacturing of nucleic acid-based vaccines offered the potential to be relatively simple, inexpensive and generic. Reverse Vaccinology and in-silico designing of vaccines are very innovative approaches and being considered as future of vaccines. Furthermore, various immuno-therapeutic agents also being developed to treat and minimize immuno-pathological damage in patients suffering from life threatening complications. For the treatment of such pathological conditions, various novel approaches such as administration of immune suppressive cytokines, blocking co-stimulatory signals or activating co-inhibitory signal of T cell activation, are being tested both in lab and clinics. The Research Topic on influenza virus vaccine and therapeutics will give an insight in to the current status and future scope of these new innovative approaches and technologies. Moreover, these new methods will also serve as a reference tool for the development of future vaccines against several other pathogens.

The immunology of cellular stress proteins

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193257 Year: Pages: 89 DOI: 10.3389/978-2-88919-325-7 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Stress proteins or heat-shock proteins (HSP) are evolutionary conserved proteins present in every prokaryotic and eukaryotic cell. Their main function is to protect cells and proteins from damage under stressful circumstances. The latter circumstances do include the cell and protein damaging effects of inflammation. The discovery of mycobacterial HSP60 being a critical antigen in the model of adjuvant arthritis, has led to studies that showed the immuno-dominance of microbial HSP60 and the potential of the microbial HSP induced repertoire of antibodies and T cells to cross-recognize the self-HSP homologues of stressed cells. Since then, the research in the immunology of stress proteins started to comprise a widening spectrum of topics with potential medical relevance. Interestingly, since stress proteins have their activities in both innate and adaptive immunity, they are key elements in the cross-roads between both arms of the immune system. Stress proteins or HSP can be considered as functional 'biomarkers' of inflammation. They are up-regulated locally during inflammation and interestingly, they seem to function as targets for anti-inflammatory regulatory T cells. In experimental models of autoimmunity, mainly arthritis, administration of HSP peptides have been shown to suppress disease. First clinical trials have shown the anti-inflammatory nature of T cell responses to Hsp. In type I diabetes and in rheumatoid arthritis, parenteral and oral administration of Hsp peptides were shown to induce a bias in pro-inflammatory T cells, switching them in the direction of regulatory cytokine production (IL4, IL5 and IL10). In addition a raised level of a marker of natural T regulatory cells, the transcription factor FoxP3, was noted in the RA trial. Other inflammatory diseases or diseases with inflammatory components which feature the immune imprint of the up-regulated Hsp are atherosclerosis, inflammatory bowel diseases, multiple sclerosis and atopic diseases such atopic dermatitis and allergic asthma.

Metabolism and Immune Tolerance

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889457250 Year: Pages: 116 DOI: 10.3389/978-2-88945-725-0 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Historically the study of the immune system and metabolism have been two very separate fields. In recent years, a growing literature has emerged illustrating how the multiple processes of cellular metabolism are intricately linked to several aspects of immune function and development. This Research Topic covers recent progress in the field now known as “Immunometabolism” and the role of metabolism in immune tolerance. Immune tolerance is operationally defined as a state where a host’s immune system is balanced such that although self-reactive lymphocytes are present, they are kept in check by immune regulation. Perturbations to this homeostasis may result in self-reactive lymphocytes gaining the upper hand and mediating auto-immune disease. Maintenance of immune tolerance involves a large cast of different cell types including effector T cells, regulatory T cells, B cells, stromal cells, dendritic cells and macrophages.Intracellular pathways and individual enzymes of metabolism have been shown to be harnessed by cells of both the adaptive and innate immune system to allow particular immune functions to be achieved. Examples include metabolic enzymes serving ‘moonlighting’ functions in mRNA translation, gene splicing, and kinase activation. Other examples include the requirement for de novo fatty acid synthesis for differentiation into Th17 effectors and CD8 memory T cells or products of the TCA cycle promoting pro-inflammatory cytokine production. Likewise, the availability of extracellular metabolic substrates has a large impact on the maintenance of local immune tolerance. For example, there are different requirements for glucose, glutamine and fatty acids for effector versus regulatory T cell development. Also tolerogenic dendritic cells mediate lowering of extracellular essential amino acids by their enhanced catabolism, promoting the induction of regulatory T cells. The purpose of this Research Topic is to provide an update on the current understanding of the multiple roles for metabolism in regulating the immune system.

Breaking the cycle: Attacking the malaria parasite in the liver

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196951 Year: Pages: 173 DOI: 10.3389/978-2-88919-695-1 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General) --- Microbiology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Despite significant progress in the global fight against malaria, this parasitic infection is still responsible for nearly 300 million clinical cases and more than half a million deaths each year, predominantly in African children less than 5 years of age. The infection starts when mosquitoes transmit small numbers of parasites into the skin. From here, the parasites travel with the bloodstream to the liver where they undergo an initial round of replication and maturation to the next developmental stage that infects red blood cells. A vaccine capable of blocking the clinically silent liver phase of the Plasmodium life cycle would prevent the subsequent symptomatic phase of this tropical disease, including its frequently fatal manifestations such as severe anemia, acute lung injury, and cerebral malaria. Parasitologists, immunologists, and vaccinologists have come to appreciate the complexity of the adaptive immune response against the liver stages of this deadly parasite. Lymphocytes play a central role in the elimination of Plasmodium infected hepatocytes, both in humans and animal models, but our understanding of the exact cellular interactions and molecular effector mechanisms that lead to parasite killing within the complex hepatic microenvironment of an immune host is still rudimentary. Nevertheless, recent collaborative efforts have led to promising vaccine approaches based on liver stages that have conferred sterile immunity in humans – the University of Oxford's Ad prime / MVA boost vaccine, the Naval Medical Research Center’s DNA prime / Ad boost vaccine, Sanaria Inc.'s radiation-attenuated whole sporozoite vaccine, and Radboud University Medical Centre’s and Sanaria's derived chemoprophylaxis with sporozoites vaccines. The aim of this Research Topic is to bring together researchers with expertise in malariology, immunology, hepatology, antigen discovery and vaccine development to provide a better understanding of the basic biology of Plasmodium in the liver and the host’s innate and adaptive immune responses. Understanding the conditions required to generate complete protection in a vaccinated individual will bring us closer to our ultimate goal, namely to develop a safe, scalable, and affordable malaria vaccine capable of inducing sustained high-level protective immunity in the large proportion of the world’s population constantly at risk of malaria.

Lymphocytes in MS and EAE: More than just a CD4+ World

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453023 Year: Pages: 160 DOI: 10.3389/978-2-88945-302-3 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Multiple sclerosis is degenerative disease of the central nervous system (CNS) in which myelin destruction and axon loss leads to the accumulation of physical, cognitive, and mental deficits. MS affects more than a million people worldwide and managing this chronic disease presents a significant health challenge. Multiple lines of evidence indicate that MS is an autoimmune disorder in which immune cells launch an inflammatory attack targeting myelin antigens. Indeed, myelin-reactive T cells and antibodies have been identified in MS patients and in animal models (namely experimental autoimmune encephalomyelitis, or EAE) that recapitulate many features of human disease. Animal model studies have demonstrated that T cells are both necessary and sufficient to initiate and sustain CNS autoimmunity. However, most MS animal models rely on the role played by CD4+ T cells and partially replicate the multiple aspects of MS pathogenesis. Thus, research in the past has focused heavily on the contribution of CD4+ T cells to the disease process; searching PubMed for “MS AND CD4” yields twice the results as corresponding searches for “CD8” or “B cell” and four times that for “NK cells”. While CD4+ T cells may represent the minimum requirement to mediate CNS autoimmunity, it is clear that the immune response underlying human MS is far more complex and involves numerous other immune cells and subsets. This is well illustrated by the observation that MS patients treated with an anti-CD4 depleting antibody did not gain any clinical benefits whereas removal of several lymphocyte subsets using an anti-CD52 depleting antibody has been shown to impede disease progression. In particular, the pathogenic role(s) of non-CD4+ T cell lymphocytes is relatively poorly understood and under-researched, despite evidence that these subsets contribute to disease pathology or regulation. For example, the observed oligoclonal expansion of CD8+ T cells within the CNS compartment supports a local activation. CD8+ T cells with polarized cytolytic granules are seen in close proximity to oligodendrocytes and demyelinated axons in MS tissues. The presence of B cells in inflammatory lesions and antibodies in the CSF have long been recognized as features of MS and Rituximab, a B cell depleting therapy, has been shown to be highly effective to treat MS. Intriguingly, the putative MS therapeutic reagent Daclizumab may function in part through the expansion of a subset of immunoregulatory NK cells. NKT and ?d T cells may also play a role in CNS autoimmunity, given that they respond to lipid antigens and that myelin is lipid-rich. While different animal models recapitulate some of these aspects of human disease, identifying appropriate models and measures to investigate the role of these less well-understood lymphocytes in MS remains a challenge for the field. This Frontiers research topic aims to create a platform for both animal- and human-focused researchers to share their original data, hypotheses, future perspectives and commentaries regarding the role of these less-well understood lymphocyte subsets (CD8+ T cells, B cells, NK cells, NK T cells, ?d T cells) in the pathogenesis of CNS autoimmunity.

Making Science Fun - A Tribute to Our Colleague and Friend, Prof. Antonius G. Rolink (1953-2017)

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889457519 Year: Pages: 211 DOI: 10.3389/978-2-88945-751-9 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

This Research Topic honors the memory of Prof. Antonius “Ton” G. Rolink (April 19, 1953–August 06, 2017), our colleague, mentor and friend in immunology. It is now over a year since Ton left us. This article collection, authored by many of Ton’s friends and colleagues, reflects the huge contribution to cellular and molecular immunology that work emanating directly from Ton’s own hands and laboratory have made to the understanding of lymphocyte development. Ton’s hard work, expertise, generosity, passion for science and infectious humor were legendary and for all of those lucky enough to have been his colleague, he ensured that science was fun. We take this opportunity of thanking all contributors for submitting their manuscripts; we are sure that Ton would have enjoyed reading and making his own insightful comments on them. In the form of original research and review articles, these papers cover many of Ton’s scientific interests in different aspects of lymphocyte development in mouse and man. In the first section, Development of hematopoietic cells and lymphocytes, Klein et al. describe the accumulation of multipotent hematopoietic progenitors in peripheral lymphoid organs of IL-7xFlt3L double transgenic mice and Pang et al. the role of the transcription factor PU.1 on the development of Common Lymphoid Progenitors. In Early B cell development, Winkler and Mårtensson review the role of the Pre-B cell receptor in B cell development and papers by Hobeika et al. and Brennecke et al. describe models of inducible B cell development. For B cell selection, survival and tolerance, Smulski and Eibel review the role of BAFF and Kowalczyk-Quintans et al. analyse the role of membrane-bound BAFF. The impact of BIM on B cell homeostasis is discussed by Liu et al. The role of the MEK-ERK pathway in B cell tolerance is discussed by Greaves et al. and the transcriptional regulation of germinal center development is reviewed by Song and Matthias. For Hematological diseases, Ghia reviews how studies of B cell development help the understanding of Leukemia development, Kim and Schaniel review how iPS technology helps the understanding of hematological diseases and Hellmann et al. describe development of new therapeutic antibody drug conjugates. Finally, in T cell development, homeostasis and graft vs. host disease, Heiler et al. describe the therapeutic effects of IL-2/anti-IL-2 immune complexes in GvHD, Calvo-Asensio et al. describe the DNA damage response of thymocyte progenitors and Mori and Pieters review the role of Coronin 1 in T cell survival.

How aging affects T lymphocyte-mediated immunity

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194186 Year: Pages: 77 DOI: 10.3389/978-2-88919-418-6 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Increasing age has been associated with an insufficient protection following vaccination and an increased incidence and severity of infectious diseases. The predicted acceleration of global population aging will accentuate the need to understand the mechanisms that drive the age-related decline of the immune system and to, eventually, identify strategies to lower the burden of infectious diseases in elderly people. One type of immune cell appears to be most dramatically affected by the aging process: T lymphocytes. Age-related changes of the bone marrow and the thymus microenvironment lead to a decreased thymic output of functional, naïve T lymphocytes. As T lymphocytes are key players of the adaptive immune system, this research topic will summarize our current understanding on how aging affects the microenvironmental niches and molecular networks that are important for the generation, survival and function of naïve, memory and effector T lymphocytes. This research topic will also address the impact of aging on the different T lymphocyte lineages, such as regulatory T cells and Th17 cells and how age-related changes of the microenvironment affect organ- and tissue-resident memory T lymphocytes. Eventually, the identification of a set of markers for immunosenescence would facilitate the design and application of more specific therapies and improved vaccines and vaccination strategies for elderly people, thereby increasing life and health span.

PI3K signalling

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194193 Year: Pages: 139 DOI: 10.3389/978-2-88919-419-3 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The PI3Ks control many key functions in immune cells. PI3Ks phosphorylate PtdIns(4,5)P2 to yield PtdIns(3,4,5)P3. Initially, PI3K inhibitors such as Wortmannin, LY294002 and Rapamycin were used to establish a central role for Pi3K pathway in immune cells. Considerable progress in understanding the role of this pathway in cells of the immune system has been made in recent years, starting with analysis of various PI3K and Pten knockout mice and subsequently mTOR and Foxo knockout mice. Together, these experiments have revealed how PI3Ks control B cell and T cell development, T helper cell differentiation, regulatory T cell development and function, B cell and T cell trafficking, immunoglobulin class switching and much, much more. The PI3Kd inhibitor idelalisib has recently been approved for the treatment of B cell lymphoma. Clinical trials of other PI3K inhibitors in autoimmune and inflammatory diseases are also in progress. This is an opportune time to consider a Research Topic considering when what we have learned about the PI3K signalling module in lymphocyte biology and how this is making an impact on clinical immunology and haematology.

Diverse functions of mucosal resident memory T cells

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195398 Year: Pages: 86 DOI: 10.3389/978-2-88919-539-8 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Early studies recognized the unique phenotype and attributes of T cells found in mucosal tissues, such as the intestines, skin, lung and female reproductive tract. This special topic issue will cover many aspects of mucosal-resident T cell biology during infection and disease and is dedicated to Leo Lefrancois, a pioneer in this field who recently passed away. A major proportion of these mucosal T cells are memory T cells, now recognized as a major constituent of memory T cells referred to as tissue-resident memory T cells. Unlike central and effector memory T cell subsets, tissue-resident memory T cells exhibit tissue specificity with minimal systemic migration. Nonetheless, tissue-resident memory T cells share a similar origin and display some overlapping phenotypes with their other memory T cell counterparts. Articles in this issue will describe the different types of memory T cells residing in mucosal tissues, their origins and functions as well as how they vary among discrete mucosal sites. Manuscripts will consider the unique physiological environments and cellular constituents which facilitate tissue residency while preserving tissue function. Additionally, there will be descriptions of the various mechanisms responsible for the migration and segregation of tissue resident memory CD8 T cells from the peripheral T cell pool. Although the mechanisms facilitating the sequestration of tissue-resident memory T cells within a respective tissue has not well characterized, various theories will also be discussed. Lastly, how these T cells contribute to immunity to pathogens, cancer, and autoimmunity and could be modified through vaccination or therapeutic intervention will be described. As mucosal tissues are the major portals of pathogen entry and frequent transformation, the activities and persistence of tissue resident memory T cells is crucial for mediating protection at these sites.

Regulation of immune system cell functions by protein kinase C

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193264 Year: Pages: 129 DOI: 10.3389/978-2-88919-326-4 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Members of the protein kinase C (PKC) family of Ser/Thr kinases are encoded by nine distinct but closely related genes, which give rise to more than 12 different protein isoforms via a mechanism of alternative RNA splicing. Most PKC proteins are ubiquitously expressed and participate in a plethora of functions in most cell types. A majority of PKC isoforms is also expressed in cells of the immune system in which they are involved in signal transduction downstream of a range of surface receptors, including the antigen receptors on T and B lymphocytes. PKC proteins are central to signal initiation and propagation, and to the regulation of processes leading to immune cell proliferation, differentiation, homing and survival. As a result, PKC proteins directly impact on the quality and quantity of immune responses and indirectly on the host resistance to pathogens and tendency to develop immune deficiencies and autoimmune diseases. A significant progress was made in recent years in understanding the regulation of PKC enzymes, their mechanism of action and their role in determining immunocyte behavior This volume reviews the most significant contributions made in the field of immune cell regulation by PKC enzymes. Several manuscripts are devoted to the role of distinct PKC isoforms in the regulation of selected immunocyte responses. Additional manuscripts review more general mechanisms of regulation of PKC enzymes, either by post-translational modifications, such as phosphorylation or controlled proteolysis, or by interaction with different binding proteins that may alter the conformation, activity and subcellular location of PKC. Both types of mechanisms can introduce conformational changes in the molecule, which may affect its ability to interact with cofactors, ATP, or substrates. This topic will be followed by a discussion on the positive and negative impact of individual PKC isoforms on cell cycle regulation. A second section of this volume concentrates on selected topics relevant to role of the novel PKC isoform, PKC-theta, in T lymphocyte function. PKC-theta plays important and some non-redundant roles in T cell activation and is a key isoform that recruits to the immunological synapse - the surface membrane area in T cells that comes in direct contact with antigen presenting cells. The immunological synapse is formed in T cells within seconds following the engagement of the TCR by a peptide-bound MHC molecule on the surface of antigen-presenting cells. It serves as a platform for receptors, adaptor proteins, and effector molecules, which assemble into multimolecular activation complexes required for signal transduction. The unique ability of PKC-theta to activate the NF-kB, AP-1 and NF-AT transcription factors is well established, and recent studies contributed essential information on the mechanisms involved in the recruitment of PKC-theta to the center of the immunological synapse and the nature of its substrates and the role of their phosphorylated forms in signal transduction. Additional review manuscripts will describe the unique behavior of PKC-theta in regulatory T cells and its role in the regulation of other cell populations, including those of the innate immune response. This volume brings together leading experts from different disciplines that review the most recent discoveries and offer new perspectives on the contributions of PKC isoforms to biochemical processes and signaling events in different immune cell populations and their impact on the overall host immune response.

Listing 1 - 10 of 24 << page
of 3
>>
Sort by
Narrow your search

Publisher

Frontiers Media SA (20)

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by (20)

CC by-nc-nd (4)


Language

english (21)

eng (3)


Year
From To Submit

2019 (5)

2018 (3)

2017 (4)

2016 (3)

2015 (7)

2014 (2)