Search results: Found 3

Listing 1 - 3 of 3
Sort by
Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Thin Film Transistor

Author:
ISBN: 9783039215263 9783039215270 Year: Pages: 108 DOI: 10.3390/books978-3-03921-527-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Recently, new wide-band energy gap semiconductors can be grown by ALD, PLD, sputtering, or MOCVD. They have great potential for the fabrication and application to TFTs. Inorganic semiconductors have good stability against environmental degradation over their organic counterparts, whereas organic materials are usually flexible, transparent, and when solution-processed at low temperatures, are prone to degradation when exposed to heat, moisture, and oxygen. For this Special Issue, we invited researchers to submit papers discussing the development of new functional and smart materials, and inorganic as well as organic semiconductor materials, such as ZnO, InZnO, GaO, AlGaO, AnGaO, AlN/GaN, conducting polymers, molecular semiconductors, perovskite-based materials, carbon nanotubes, carbon nanotubes/polymer composites, and 2D materials (e.g., graphene, MoS2) and their potential applications in display drivers, radio frequency identification tags, e-paper, gas, chemical and biosensors, to name but a few.

Wide Bandgap Semiconductor Based Micro/Nano Devices

Author:
ISBN: 9783038978428 9783038978435 Year: Pages: 138 DOI: 10.3390/books978-3-03897-843-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Keywords

optical band gap --- tungsten trioxide film --- annealing temperature --- electrochromism --- AlGaN/GaN HEMT --- DIBL effect --- channel length modulation --- power amplifier --- W band --- high electron mobility transistors --- high electron mobility transistor (HEMT) --- AlGaN/GaN --- ohmic contact --- regrown contact --- ammonothermal GaN --- power amplifier --- I–V kink effect --- AlGaN/GaN HEMT --- large signal performance --- 4H-SiC --- MESFET --- ultrahigh upper gate height --- power added efficiency --- harsh environment --- space application --- 1T DRAM --- wide-bandgap semiconductor --- high-temperature operation --- TCAD --- amorphous InGaZnO (a-IGZO) --- thin-film transistor (TFT) --- positive gate bias stress (PGBS) --- passivation layer --- characteristic length --- edge termination --- silicon carbide (SiC) --- junction termination extension (JTE) --- breakdown voltage (BV) --- Ku-band --- GaN high electron mobility transistor (HEMT) --- power amplifier --- asymmetric power combining --- amplitude balance --- phase balance --- micron-sized patterned sapphire substrate --- growth of GaN --- sidewall GaN --- flip-chip light-emitting diodes --- distributed Bragg reflector --- light output power --- external quantum efficiency --- threshold voltage (Vth) stability --- gallium nitride (GaN) --- high electron mobility transistors (HEMTs) --- analytical model --- high-temperature operation --- T-anode --- GaN --- buffer layer --- anode field plate (AFP) --- cathode field plate (CFP) --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (3)


Year
From To Submit

2019 (3)