Search results: Found 5

Listing 1 - 5 of 5
Sort by
Involvements of TRP Channels and Oxidative Stress in Pain

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455959 Year: Pages: 126 DOI: 10.3389/978-2-88945-595-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Undoubtedly, pain conditions the quality of life of millions of people worldwide suffering a wide range of diseases. Major research efforts are being made by the international scientific community to determine the mechanisms underlying nociception. Growing evidence points out a complex network including oxidative and nitrosative stress, inflammatory response and cation signaling. In this sense, transient receptor potential (TRP) channels have attracted researchers’ attention. Expression levels are very different in tissues and cells mediating a myriad of processes in our organism. At the neurological level, it has been observed that the expression levelsof four TRP channels (TRPA1, TRPM2, TRPV1, and TRPV4) are high in neurons related to nociception, including dorsal root ganglion and trigeminal ganglia neurons. For this reason, this research field promises to shed light on this intricated matrix linking oxidative stress, calcium signaling (via TRP channels), and inflammatory signals in different pain modalities, including neuropathic pain and chemotherapy-induced peripheral pain. In such a way, all this intense research activity will enable us to design individual and rational treatment strategies for pain relief, such as the use of molecular neurosurgery.

Transient Receptor Potential (TRP) Channels in Drug Discovery: Old Concepts & New Thoughts

Authors: ---
ISBN: 9783038426387 9783038426394 Year: Pages: VI, 250 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics
Added to DOAB on : 2018-06-22 11:29:17
License:

Loading...
Export citation

Choose an application

Abstract

The year 2017 marks the 20th anniversary of the molecular cloning of the long sought-after capsaicin receptor, now known as TRPV1 (Transient Receptor Potential Vanilloid 1). This seminal discovery has opened up a “hot” new field of basic research and launched drug discovery efforts into the large family (by the latest count, 28 mammalian members and 27 in humans) of TRP ion channels. Indeed, it took less than a decade for the first potent, small molecule TRPV1 antagonists to enter phase 1 clinical trials, closely followed by TRPA1 and TRPM8 antagonists. The literature on TRP channels is immense. TRPV1 alone is a keyword in over 5000 publications searchable in PubMed. Clearly, it is not possible to capture the entire literature in a single thematic issue. Consequently, the selection of articles presented in this book represents a sampling of the literature, and is admittedly subjective. We tried to survey the wide range of human diseases in which TRP channels have been implicated, ranging from chronic pain through asthma and diabetes to cancer, and highlight the channels that appear to hold the greatest promise for therapeutic targeting. With this book, we hope to convince readers that TRP channels constitute a formidable family of potential therapeutic targets that will likely continue to demand attention.

Toxins in Drug Discovery and Pharmacology

Author:
ISBN: 9783038428619 9783038428626 Year: Pages: XII, 304 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Public Health
Added to DOAB on : 2018-05-04 11:37:49
License:

Loading...
Export citation

Choose an application

Abstract

Venoms from marine and terrestrial animals (cone snails, scorpions, spiders, snakes, centipedes, cnidarian, etc.) can be seen as untapped cocktails of biologically active compounds that are being increasingly recognized as a new emerging source of peptide-based therapeutics. Venomous animals are considered to be specialized predators that have evolved the most sophisticated peptide chemistry and neuropharmacology for their own biological purposes by producing venoms that contain a structural and functional diversity of neurotoxins. These neurotoxins appear to be highly selective ligands for a wide range of ion channels and receptors. Therefore, they represent interesting lead compounds for the development of analgesics, anti-cancer drugs, drugs for neurological disorders such as multiple sclerosis, Parkinson' s disease, Alzheimer' s disease, and other therapeutics.This Special Issue of Toxins aims to provide a comprehensive look at toxins and toxin-inspired leads and will focus on the mechanisms of action, structure–function relationships, and evolution of pharmacologically interesting venom components, including the most recent developments related to the emergence of venoms as an underutilized source of highly evolved bioactive peptides with clinical potential.

TRP Channels in Health and Disease

Author:
ISBN: 9783039210824 / 9783039210831 Year: Pages: 266 DOI: 10.3390/books978-3-03921-083-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.

Keywords

ion channel --- TRPC --- small molecules --- calcium --- chemical probes --- TRPV1 --- TRPV2 --- TRPV3 --- TRPV4 --- mucosal epithelium --- ulcerative colitis --- inflammatory bowel disease --- TRPM4 channel --- cardiovascular system --- physiology --- pathophysiology --- TRPC6 --- elementary immunology --- inflammation --- calcium --- sodium --- neutrophils --- lymphocytes --- endothelium --- platelets --- human medulla oblongata --- cuneate nucleus --- dorsal column nuclei --- TRPV1 --- calcitonin gene-related peptide --- substance P --- TRP channels --- calcium signaling --- salivary glands --- xerostomia --- radiation --- inflammation --- transient receptor potential channels --- TRPC3 pharmacology --- channel structure --- lipid mediators --- photochromic ligands --- transient receptor potential --- TRPC3 --- mGluR1 --- GABAB --- EPSC --- Purkinje cell --- cerebellum --- toxicology --- TRP channels --- organ toxicity --- chemicals --- pollutants --- chemosensor --- TRPM7 --- kinase --- inflammation --- lymphocytes --- calcium signalling --- SMAD --- TH17 --- hypersensitivity --- regulatory T cells --- thrombosis --- graft versus host disease --- 2D gel electrophoresis --- AP18 --- HEK293 --- HSP70 --- MALDI-TOF MS(/MS) --- nanoHPLC-ESI MS/MS --- proteomics --- sulfur mustard --- TRPA1 --- TRPC channels --- diacylglycerol --- TRPC4 --- TRPC5 --- NHERF --- TRP channel --- TRPY1 --- Saccharomyces cerevisiae --- calcium --- manganese --- oxidative stress --- ion channels --- overproduction --- production platform --- protein purification --- Saccharomyces cerevisiae --- sensors --- transient receptor potential (TRP) channels --- yeast --- adipose tissue --- bioavailable --- menthol --- topical --- TRPM8 --- n/a

Molecular Research of Endometrial Pathophysiology

Authors: ---
ISBN: 9783039214952 / 9783039214969 Year: Pages: 378 DOI: 10.3390/books978-3-03921-496-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The endometrium has been the subject of intense research in a variety of clinical settings, because of its importance in the reproductive process and its role in women’s health. In the past 15 years, significant efforts have been invested in defining the molecular phenotype of the receptive phase endometrium as well as of various endometrial pathologies. Although this has generated a wealth of information on the molecular landscape of human endometrium, there is a need to complement this information in light of the novel methodologies and innovative technical approaches. The focus of this International Journal of Molecular Sciences Special Issue is on molecular and cellular mechanisms of endometrium and endometrium-related disorders. The progress made in the molecular actions of steroids, in the metabolism of steroids and intracrinology, in endometrial intracellular pathways, in stem cells biology, as well as in the molecular alterations underlying endometrium-related pathologies has been the focus of the reviews and papers included.

Keywords

RANK --- endometrium --- endometrial cancer --- prognosis --- immunohistochemistry --- gene expression --- endometriosis --- developmental pathway --- pathogenomics --- mesenchymal stem cells --- endometrial cancer --- mtDNA mutations --- deficit of complex I --- antioxidant response --- mitochondrial biogenesis --- mitochondrial dynamics --- mitophagy --- miRNA --- lncRNAs --- endometrial cancer --- endometriosis --- chronic endometritis --- cell contacts --- tight junction --- adherens junction --- gap junction --- endometrium --- implantation --- decidualization --- endometriosis --- endometrial cancer --- liquid biopsy --- uterine aspirate --- circulating tumour cells (CTCs) --- circulating tumour DNA (ctDNA) --- exosomes --- Vitamin D --- endometrium --- endometrial cancer --- endometrial cancer --- preclinical models --- translational research --- endometrial cancer --- type II endometrial carcinoma --- targeted therapy --- kinase inhibitor --- molecular marker --- protein kinase --- protein phosphatase --- PP2A --- PPP2R1A --- SMAP --- endometriosis --- infertility --- niche --- inflammation --- immunomodulation --- mesenchymal stem cell --- orthoxenograft --- uterine cancer --- avatar --- murine models --- personalized medicine --- targeted therapy --- preclinical studies --- translational research --- endometriosis --- TRP channels --- endometrial stromal cells --- eutopic and ectopic endometrium --- endometrial cell --- pathway --- proliferation --- decidualization --- migration --- angiogenesis --- regeneration --- breakdown --- implantation --- endometrial cancer --- orthotopic xenograft model --- estrogen dependent --- bioluminescence imaging --- contrast-enhanced CT scan --- endometrium --- adult stem cells --- endometrial regeneration --- stem cell markers --- endometriosis --- endometrial cancer --- decidualisation --- oestradiol --- aromatase --- testosterone --- dehydroepiandrosterone (DHEA) --- endometriosis --- endometrial cancer --- sulfatase --- endometriosis --- ectopic stroma --- microRNA --- small RNA sequencing --- EDN1 --- HOXA10 --- miR-139-5p --- miR-375 --- CTCF --- tumour suppressor gene --- haploinsufficiency --- zinc finger --- CRISPR/Cas9 --- cancer --- endometrial cancer --- gene editing --- phosphoinositide 3-kinase --- PIK3CA --- PIK3CB --- p110? --- p110? --- endometrial cancer --- LGR5 --- endometrium --- endometriosis --- menstrual cycle --- macrophages

Listing 1 - 5 of 5
Sort by
Narrow your search