Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Fundamentals for the Anthropocene

Author:
ISBN: 9783110567311 Year: Pages: 135 DOI: 10.1515/9783110567311 Language: English
Publisher: De Gruyter
Subject: Statistics --- Biology
Added to DOAB on : 2018-09-11 11:41:35
License:

Loading...
Export citation

Choose an application

Abstract

This book seeks to bridge the gap between leading edge scholarship about the nature of the physical, tangible Universe and the nature of the life process on Earth on the one hand, and on the other hand challenges facing human society as to the current revolution in energy sources, national and international levels of political and economic organization, and humanity`s impacts upon the global ecosystem which have given rise to the depiction of a new era in earthlife termed the anthropocene.The author`s public career included responsibilities for economic policy formulation and implementation at the United States Department of Justice, the United States Agency for International Development, and a White House Office of Consumer Affairs. This provided an elevated overview of many current economic and political issues.These responsibilities stimulated a multi-decade exploration of leading academics` insights into the relational structuring of the Universe, non-equilibrium thermodynamics, complexity in the universe, and the structure of the life process. This book applies such fundamental insights to the question whether humanity will succeed or fail in its ambitious but uncertain quest.

The Origin and the Evolution of Firms

Author:
ISBN: 9781607509561 Year: Pages: 232 DOI: 10.26530/OAPEN_413210 Language: English
Publisher: IOS Press Grant: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Subject: Biology --- Heat --- Astronomy (General) --- Science (General) --- Economics
Added to DOAB on : 2012-05-21 00:00:00
License:

Loading...
Export citation

Choose an application

Abstract

The firms and markets of today's complex socio-economic system developed in a spontaneous process termed evolution, in just the same way as the universe, the solar system, the Earth and all that lives upon it. Darwin's theory of evolution clearly demonstrated that evolution involved increasing organization. As we began to explore the molecular basis of life and its evolution, it became equally clear that it depended on the processing and communication of information. This book develops a consistent theory of evolution in its wider sense, examining the information based laws and forces that drive it. Exploring subjects as diverse as economics and the theories of thermodynamics, the author revisits the paradox of the apparent conflict between the laws of thermodynamics and evolution to arrive at a systems theory, tracing a continuous line of evolving information sets that connect the Big-Bang to the firms and markets of our current socio-economic system.

Thermodynamics and Statistical Mechanics of Small Systems

Authors: --- ---
ISBN: 9783038970576 9783038970583 Year: Pages: 334 DOI: 10.3390/books978-3-03897-058-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General)
Added to DOAB on : 2018-09-25 10:51:00
License:

Loading...
Export citation

Choose an application

Abstract

A challenging frontier in modern statistical physics concerns systems with a small number of degrees of freedom, far from the thermodynamic limit. Beyond the general interest in the foundation of statistical mechanics, the relevance of this subject is due to the recent increase of resolution in the observation and manipulation of biological and man-made objects at micro- and nano-scales. A peculiar feature of small systems is the role played by fluctuations, which cannot be neglected and are responsible for many non-trivial behaviors. The study of fluctuations of thermodynamic quantities, such as energy or entropy, goes back to Einstein, Onsager, and Kubo; more recently, interest in this matter has grown with the establishment of new fluctuation–dissipation relations, and of so-called stochastic thermodynamics. This turning point has received a strong impulse from the study of systems that are far from the thermodynamic equilibrium, due to very long relaxation times, as in disordered systems, or due to the presence of external forcing and dissipation, as in granular or active matter. Applications of the thermodynamic and statistical mechanics of small systems range from molecular biology to micro-mechanics, including models of nano-transport, Brownian motors, and (living or artificial) self-propelled organisms.

Heat and Mass Transfer - Advances in Science and Technology Applications

Author:
Book Series: Heat and Mass Transfer ISSN: 26316196 ISBN: 9781789844467 9781789844474 9781789854169 Year: Volume: 2 Pages: 406 DOI: 10.5772/intechopen.77466 Language: English
Publisher: IntechOpen
Subject: Mechanical Engineering
Added to DOAB on : 2019-10-03 07:51:53

Loading...
Export citation

Choose an application

Abstract

Heat and mass transfer is the core science for many industrial processes as well as technical and scientific devices. Automotive, aerospace, power generation (both by conventional and renewable energies), industrial equipment and rotating machinery, materials and chemical processing, and many other industries are requiring heat and mass transfer processes. Since the early studies in the seventeenth and eighteenth centuries, there has been tremendous technical progress and scientific advances in the knowledge of heat and mass transfer, where modeling and simulation developments are increasingly contributing to the current state of the art. Heat and Mass Transfer - Advances in Science and Technology Applications aims at providing researchers and practitioners with a valuable compendium of significant advances in the field.

Biological Information:New Perspectives

Authors: --- --- --- --- et al.
ISBN: 9789814508728 Year: Pages: 584 DOI: 10.1142/8818 Language: English
Publisher: World Scientific Publishing Co.
Subject: Technology (General)
Added to DOAB on : 2016-01-19 03:49:23
License:

Loading...
Export citation

Choose an application

Abstract

In the spring of 2011, a diverse group of scientists gathered at Cornell University to discuss their research into the nature and origin of biological information. This symposium brought together experts in information theory, computer science, numerical simulation, thermodynamics, evolutionary theory, whole organism biology, developmental biology, molecular biology, genetics, physics, biophysics, mathematics, and linguistics. This volume presents new research by those invited to speak at the conference.The contributors to this volume use their wide-ranging expertise in the area of biological information to bring fresh insights into the many explanatory difficulties associated with biological information. These authors raise major challenges to the conventional scientific wisdom, which attempts to explain all biological information exclusively in terms of the standard mutation/selection paradigm.Several clear themes emerged from these research papers: 1) Information is indispensable to our understanding of what life is; 2) Biological information is more than the material structures that embody it; 3) Conventional chemical and evolutionary mechanisms seem insufficient to fully explain the labyrinth of information that is life. By exploring new perspectives on biological information, this volume seeks to expand, encourage, and enrich research into the nature and origin of biological information.Contents:Session One — Information Theory & Biology: Introductory Comments (Robert J Marks II):Biological Information — What is It? (Werner Gitt, Robert Compton and Jorge Fernandez)A General Theory of Information Cost Incurred by Successful Search (William A Dembski, Winston Ewert and Robert J Marks II)Pragmatic Information (John W Oller, Jr)Limits of Chaos and Progress in Evolutionary Dynamics (William F Basener)Tierra: The Character of Adaptation (Winston Ewert, William A Dembski and Robert J Marks II)Multiple Overlapping Genetic Codes Profoundly Reduce the Probability of Beneficial Mutation (George Montañez, Robert J Marks II, Jorge Fernandez and John C Sanford)Entropy, Evolution and Open Systems (Granville Sewell)Information and Thermodynamics in Living Systems (Andy C McIntosh)Session Two — Biological Information and Genetic Theory: Introductory Comments (John C Sanford):Not Junk After All: Non-Protein-Coding DNA Carries Extensive Biological Information (Jonathan Wells)Can Purifying Natural Selection Preserve Biological Information? (Paul Gibson, John R Baumgardner, Wesley H Brewer and John C Sanford)Selection Threshold Severely Constrains Capture of Beneficial Mutations (John C Sanford, John R Baumgardner and Wesley H Brewer)Using Numerical Simulation to Test the “Mutation-Count” Hypothesis (Wesley H Brewer, John R Baumgardner and John C Sanford)Can Synergistic Epistasis Halt Mutation Accumulation? Results from Numerical Simulation (John R Baumgardner, Wesley H Brewer and John C Sanford)Computational Evolution Experiments Reveal a Net Loss of Genetic Information Despite Selection (Chase W Nelson and John C Sanford)Information Loss: Potential for Accelerating Natural Genetic Attenuation of RNA Viruses (Wesley H Brewer, Franzine D Smith and John C Sanford)DNA.EXE: A Sequence Comparison between the Human Genome and Computer Code (Josiah Seaman)Biocybernetics and Biosemiosis (Donald Johnson)Session Three — Theoretical Molecular Biology: Introductory Comments (Michael J Behe):An Ode to the Code: Evidence for Fine-Tuning in the Standard Codon Table (Jed C Macosko and Amanda M Smelser)A New Model of Intracellular Communication Based on Coherent, High-Frequency Vibrations in Biomolecules (L Dent)Getting There First: An Evolutionary Rate Advantage for Adaptive Loss-of-Function Mutations (Michael J Behe)The Membrane Code: A Carrier of Essential Biological Information That is Not Specified by DNA and is Inherited Apart from It (Jonathan Wells)Explaining Metabolic Innovation: Neo-Darwinism Versus Design (Douglas D Axe and Ann K Gauger)Session Four — Biological Information and Self-Organizational Complexity Theory: Introductory Comments (Bruce L Gordon):Evolution Beyond Entailing Law: The Roles of Embodied Information and Self Organization (Stuart Kauffman)Towards a General Biology: Emergence of Life and Information from the Perspective of Complex Systems Dynamics (Bruce H Weber)Readership: Academics, researchers, postgraduates and advanced undergraduates in bioinformatics. Biologists, mathematicians/statisticians, physicists and computer scientists.

Differential Geometrical Theory of Statistics

Authors: ---
ISBN: 9783038424253 9783038424246 Year: Pages: XIV, 458 DOI: 10.3390/books978-3-03842-425-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General)
Added to DOAB on : 2017-06-12 12:20:37
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue "Differential Geometrical Theory of Statistics" collates selected invited and contributed talks presented during the conference GSI'15 on "Geometric Science of Information" which was held at the Ecole Polytechnique, Paris-Saclay Campus, France, in October 2015 (Conference web site: http://www.see.asso.fr/gsi2015).

Joseph Fourier 250th Birthday. Modern Fourier Analysis and Fourier Heat Equation in Information Sciences for the XXIst century

Authors: ---
ISBN: 9783038977469 Year: Pages: 260 DOI: 10.3390/books978-3-03897-747-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-04-05 11:17:10
License:

Loading...
Export citation

Choose an application

Abstract

For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.

The Fourteenth Marcel Grossmann Meeting:On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (In 4 Volumes)

Authors: --- ---
ISBN: 9789813226609 Year: Pages: 1084 DOI: 10.1142/10614 Language: English
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2017-11-20 08:45:58
License:

Loading...
Export citation

Choose an application

Abstract

The four volumes of the proceedings of MG14 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 35 morning plenary talks over 6 days, 6 evening popular talks and 100 parallel sessions on 84 topics over 4 afternoons.Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics.The remaining volumes include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity.

Molecular Magnets

Authors: ---
ISBN: 9783038977100 Year: Pages: 166 DOI: 10.3390/books978-3-03897-711-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

Molecular magnets show many properties not met in conventional metallic magnetic materials, i.e. low density, transparency to electromagnetic radiation, sensitivity to external stimuli such as light, pressure, temperature, chemical modification or magnetic/electric fields, and others. They can serve as “functional” materials in sensors of different types or be applied in high-density magnetic storage or nanoscale devices. Research into molecule-based materials became more intense at the end of the 20th century and is now an important branch of modern science. The articles in this Special Issue, written by physicists and chemists, reflect the current work on molecular magnets being carried out in several research centers. Theoretical papers in the issue concern the influence of spin anisotropy in the low dimensional lattice of the resulting type of magnet, as well as thermodynamics and magnetic excitations in spin trimers. The impact of external pressure on structural and magnetic properties and its underlying mechanisms is described using the example of Prussian blue analogue data. The other functionality discussed is the magnetocaloric effect, investigated in coordination polymers and high spin clusters. In this issue, new molecular magnets are presented: (i) ferromagnetic high-spin [Mn6] single-molecule magnets, (ii) solvatomagnetic compounds changing their structure and magnetism dependent on water content, and (iii) a family of purely organic magnetic materials. Finally, an advanced calorimetric study of anisotropy in magnetic molecular superconductors is reviewed.

Emergent Quantum Mechanics. David Bohm Centennial Perspectives

Authors: --- --- ---
ISBN: 9783038976165 Year: Pages: 544 DOI: 10.3390/books978-3-03897-617-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Emergent quantum mechanics explores the possibility of an ontology for quantum mechanics. The resurgence of interest in ""deeper-level"" theories for quantum phenomena challenges the standard, textbook interpretation. The book presents expert views that critically evaluate the significance—for 21st century physics—of ontological quantum mechanics, an approach that David Bohm helped pioneer. The possibility of a deterministic quantum theory was first introduced with the original de Broglie-Bohm theory, which has also been developed as Bohmian mechanics. The wide range of perspectives that were contributed to this book on the occasion of David Bohm’s centennial celebration provide ample evidence for the physical consistency of ontological quantum mechanics. The book addresses deeper-level questions such as the following: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal? Might a radically new conception of reality include a form of quantum causality or quantum ontology? What is the role of the experimenter agent? As the book demonstrates, the advancement of ‘quantum ontology’—as a scientific concept—marks a clear break with classical reality. The search for quantum reality entails unconventional causal structures and non-classical ontology, which can be fully consistent with the known record of quantum observations in the laboratory.

Keywords

quantum foundations --- nonlocality --- retrocausality --- Bell’s theorem --- Bohmian mechanics --- quantum theory --- surrealistic trajectories --- Bell inequality --- quantum mechanics --- generalized Lagrangian paths --- covariant quantum gravity --- emergent space-time --- Gaussian-like solutions --- entropy and time evolution --- resonances in quantum systems --- the Friedrichs model --- complex entropy. --- Bell’s theorem --- the causal arrow of time --- retrocausality --- superdeterminism --- toy-models --- quantum ontology --- sub-quantum dynamics --- micro-constituents --- emergent space-time --- emergent quantum gravity --- entropic gravity --- black hole thermodynamics --- Stern-Gerlach --- trajectories --- spin --- Bell theorem --- fractal geometry --- p-adic metric --- singular limit --- gravity --- conspiracy --- free will --- number theory --- quantum potential --- Feynman paths --- weak values --- Bohm theory --- no-hidden-variables theorems --- observables --- measurement problem --- Bohmian mechanics --- primitive ontology --- Retrocausation --- weak values --- Stochastic Electrodynamics --- quantum mechanics --- decoherence --- interpretations --- pilot-wave theory --- Bohmian mechanics --- Born rule statistics --- measurement problem --- quantum thermodynamics --- strong coupling --- operator thermodynamic functions --- quantum theory --- de Broglie–Bohm theory --- contextuality --- atom-surface scattering --- bohmian mechanics --- matter-wave optics --- diffraction --- vortical dynamics --- Schrödinger equation --- de Broglie–Bohm theory --- nonequilibrium thermodynamics --- zero-point field --- de Broglie–Bohm interpretation of quantum mechanics --- pilot wave --- interior-boundary condition --- ultraviolet divergence --- quantum field theory --- Aharonov–Bohm effect --- physical ontology --- nomology --- interpretation --- gauge freedom --- Canonical Presentation --- relational space --- relational interpretation of quantum mechanics --- measurement problem --- non-locality --- discrete calculus --- iterant --- commutator --- diffusion constant --- Levi-Civita connection --- curvature tensor --- constraints --- Kilmister equation --- Bianchi identity --- stochastic differential equations --- Monte Carlo simulations --- Burgers equation --- Langevin equation --- fractional velocity --- interpretations of quantum mechanics --- David Bohm --- mind–body problem --- quantum holism --- fundamental irreversibility --- space-time fluctuations --- spontaneous state reduction --- Poincaré recurrence --- symplectic camel --- quantum mechanics --- Hamiltonian --- molecule interference --- matter-waves --- metrology --- magnetic deflectometry --- photochemistry --- past of the photon --- Mach–Zehnder interferometer --- Dove prism --- photon trajectory --- weak measurement --- transition probability amplitude --- atomic metastable states --- Bell’s theorem --- Bohmian mechanics --- nonlocality --- many interacting worlds --- wavefunction nodes --- bouncing oil droplets --- stochastic quantum dynamics --- de Broglie–Bohm theory --- quantum non-equilibrium --- H-theorem --- ergodicity --- ontological quantum mechanics --- objective non-signaling constraint --- quantum inaccessibility --- epistemic agent --- emergent quantum state --- self-referential dynamics --- dynamical chaos --- computational irreducibility --- undecidable dynamics --- Turing incomputability --- quantum ontology --- nonlocality --- time-symmetry --- retrocausality --- quantum causality --- conscious agent --- emergent quantum mechanics --- Bohmian mechanics --- de Broglie-Bohm theory

Listing 1 - 10 of 14 << page
of 2
>>
Sort by