Search results: Found 2

Listing 1 - 2 of 2
Sort by
The Impact of Microorganisms on Consumption of Atmospheric Trace Gases

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453269 Year: Pages: 201 DOI: 10.3389/978-2-88945-326-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Gases with a mixing ratio of less than one percent in the lower atmosphere (i.e. the troposphere) are considered as trace gases. Numerous of these trace gases originate from biological processes in marine and terrestrial ecosystems. These gases are of relevance for the climate as they contribute to global warming or to the troposphere’s chemical reactive system that builds the ozone layer or they impact on the stability of aerosols, greenhouse, and pollutant gases. These reactive trace gases include methane, a multitude of volatile organic compounds of biogenic origin (bVOCs) and inorganic gases such as nitrogen oxides or ozone. The regulatory function of microorganisms for trace gas cycling has been intensively studied for the greenhouse gases nitrous oxide and methane, but is less well understood for microorganisms that metabolize molecular hydrogen, carbon monoxide, or bVOCs. The studies compiled in this Research Topic reflect this very well. While a number of articles focus on nitrous oxide and methane or carbon monoxide oxidation, only a few articles address conversion processes of further bVOCs. The Research Topic is complemented by three review articles about the consumption of methane and monoterpenes, as well as the role of the phyllosphere as a particular habitat for trace gas-consuming microorganisms, and point out future research directions in the field. The presented scientific work illustrates that the field of microbial regulation of trace glas fluxes is still in its infancy when one broadens the view on gases beyond methane and nitrous oxide. However, there is a societal need to better predict global dynamics of trace gases that impact on the functionality and warming of the troposphere. Upcoming modelling approaches will need further information on process rates, features and distribution of the driving microorganisms to fulfill this demanding task.

Ocean-Atmosphere Interactions of Gases and Particles

Authors: ---
Book Series: Springer Earth System Sciences ISSN: 21979596 ISBN: 9783642256424 9783642256431 Year: Pages: 315 DOI: 10.1007/978-3-642-25643-1 Language: English
Publisher: Springer Nature
Subject: Business and Management --- General and Civil Engineering --- Materials --- Geography
Added to DOAB on : 2014-02-10 16:18:02
License:

Loading...
Export citation

Choose an application

Abstract

The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (1)

Springer Nature (1)


License

CC by (1)

CC by-nc (1)


Language

english (2)


Year
From To Submit

2017 (1)

2014 (1)