Search results: Found 18

Listing 1 - 10 of 18 << page
of 2
>>
Sort by
3D Printing with Biomaterials - Towards a Sustainable and Circular Economy

Authors: ---
ISBN: 9781614994855 9781614994862 Year: Pages: 86 DOI: 10.3233/978-1-61499-486-2-i Language: English
Publisher: IOS Press
Subject: Environmental Sciences --- Business and Management --- General and Civil Engineering --- Materials
Added to DOAB on : 2017-02-09 15:07:44
License:

Loading...
Export citation

Choose an application

Abstract

"Additive manufacturing or 3D printing, manufacturing a product layer by layer, offers large design freedom and faster product development cycles, as well as low startup cost of production, on-demand production and local production. In principle, any product could be made by additive manufacturing. Even food and living organic cells can be printed. We can create, design and manufacture what we want at the location we want. 3D printing will create a revolution in manufacturing, a real paradigm change.3D printing holds the promise to manufacture with less waste and energy. We can print metals, ceramics, sand, synthetic materials such as plastics, food or living cells. However, the production of plastics is nowadays based on fossil fuels. And that’s where we witness a paradigm change too. The production of these synthetic materials can be based also on biomaterials with biomass as feedstock.A wealth of new and innovative products are emerging when we combine these two paradigm changes: 3D printing and biomaterials. Moreover, the combination of 3D printing with biomaterials holds the promise to realize a truly sustainable and circular economy."

Entwicklung neuer Materialien für die additive Fertigung und das Rapid Prototyping von Glas und Polymethylmethacrylat

Author:
Book Series: Schriften des Instituts für Mikrostrukturtechnik am Karlsruher Institut für Technologie / Hrsg.: Institut für Mikrostrukturtechnik ISSN: 18695183 ISBN: 9783731508359 Year: Volume: 39 Pages: XVII, 219 p. DOI: 10.5445/KSP/1000085420 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

Curable nanocomposites were developed to fabricate fused silica glass. During a thermal debinding and sintering step a transparent fused silica glass is received. These nanocomposites can be structured using stereolithography or replicative processes. PMMA prepolymers were developed which can be structured using lithography in a few seconds. PFPEs were established as a stereolithography material.

3D Printing of Metals

Author:
ISBN: 9783038425915 9783038425922 Year: Pages: VIII, 156 DOI: 10.3390/books978-3-03842-592-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-12-06 12:54:59
License:

Loading...
Export citation

Choose an application

Abstract

Three-dimensional printing is a futuristic technology capable of transforming the ways in which we make components and devices. It is almost certain that this technique will find its niche in the manufacturing sector in the very near future. In view of the growing importance of 3D printing, this book addresses key issues related to emerging science and technology in this area. Detailed and informative articles are presented in relation to a wide variety of materials, including those based on critical engineering metals such as aluminum, magnesium, titanium and composites. Advances in various techniques, such as electron beam melting and selective laser melting are discussed. Of key importance in the area of materials science is the end properties of the materials following processing. Accordingly, the articles presented critically discuss the effects of microstructural features such as porosity, forming defects and the heat treatment induced effects on the mechanical properties. Applications covered in these articles are targeted at the aerospace, automobile, defense and aerospace sectors. Overall, the information presented in this book is of significant importance for academic and industrial-based researchers who wish to inform themselves regarding this upcoming highly promising manufacturing technique.

3D Printing of Metals

Author:
ISBN: 9783039213412 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

Additive Manufacturing Technologies and Applications

Authors: --- ---
ISBN: 9783038425489 9783038425496 Year: Pages: VI, 182 DOI: 10.3390/books978-3-03842-549-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2017-12-27 09:05:09
License:

Loading...
Export citation

Choose an application

Abstract

The present Special Issue proposes articles in the area of Additive Manufacturing with particular attention to the different employed technologies and the several possible applications. The main investigated technologies are the Selective Laser Sintering (SLS) and the Fused Deposition Modelling (FDM). These methodologies, combined with the Computer Aided Design (CAD), provide important advantages. Numerical, analytical and experimental knowledge and models are proposed to exploit the potential advantages given by 3D printing for the production of modern systems and structures in aerospace, mechanical, civil and biomedical engineering fields. The 11 selected papers propose different additive manufacturing methodologies and related applications and studies.

Bioengineering Liver Transplantation

Authors: --- ---
ISBN: 9783039217441 9783039217458 Year: Pages: 132 DOI: 10.3390/books978-3-03921-745-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Special Issue is to review, understand, and evaluate new and exciting opportunities from the field on regenerative medicine, biomaterials, and stem cell research for the bioengineering of human liver grafts that can be applied for transplantation and personalized treatment of end-stage liver disease.The development of culture conditions for long-term expansion of LGR5+ intestinal stem cells as crypt-villus structures demonstrated the feasibility of deriving complex, organ-like structures in vitro from primary adult tissues, including the liver. Moreover, human pluripotent stem cells (hPSCs) can be applied to generate functionally maturated liver and bile duct epithelial cells.In this Special Issue, we welcome reviews and original papers focussing on hepatic cell sources, including adult hepatic stem cells, organoids, fetal and induced pluripotent stem cells, and primary cells (i.e., hepatocytes, cholangiocytes, and endothelial cells) and how these cells can be applied in tissue engineering strategies to generate implantable and personalized liver grafts. Potential topics include, but are not limited to, the following: liver tissue engineering, liver regeneration, graft repair, liver stem cells and organoids, bio-scaffolds, and 3D printing.We invite you to contribute original research papers, as well as comprehensive reviews, aligned with these themes, to advance and improve the actual state-of-the-art in liver bioengineering and providing new opportunities for the imminent medical problem of organ and tissue shortage for transplantation.

Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity

Authors: --- ---
ISBN: 9783039283545 9783039283552 Year: Pages: 222 DOI: 10.3390/books978-3-03928-355-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The rapid growth of modern industry has resulted in a growing demand for construction materials with excellent operational properties. However, the improved features of these materials can significantly hinder their manufacture and, therefore, they can be defined as hard-to-cut. The main difficulties during the manufacturing/processing of hard-to-cut materials are attributed especially to their high hardness and abrasion resistance, high strength at room or elevated temperatures, increased thermal conductivity, as well as resistance to oxidation and corrosion. Nowadays, the group of hard-to-cut materials is extensive and still expanding, which is attributed to the development of a novel manufacturing techniques (e.g., additive technologies). Currently, the group of hard-to-cut materials mainly includes hardened and stainless steels, titanium, cobalt and nickel alloys, composites, ceramics, as well as the hard clads fabricated by additive techniques. This Special Issue, “Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity”, provides the collection of research papers regarding the various problems correlated with hard-to-cut materials. The analysis of these studies reveals the primary directions regarding the developments in manufacturing methods, characterization, and optimization of hard-to-cut materials.

Structure and Mechanical Properties of Transition Group Metals, Alloys, and Intermetallic Compounds

Author:
ISBN: 9783039211463 9783039211470 Year: Pages: 222 DOI: 10.3390/books978-3-03921-147-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Special Issue is to present the latest theoretical and experimental achievements concerning the mechanisms of microstructural change in metallic materials subject to different processing methods, and their effect on mechanical properties. It is my pleasure to present a series of compelling scientific papers written by scientists from the community of transition group metals, alloys, and intermetallic compounds.

Keywords

metal matrix composites --- laser metal deposition --- Inconel 625 --- additive manufacturing --- laser processing --- metal matrix composites --- Z-pin reinforcement --- delamination --- carbon fiber --- strengthening mechanisms --- severe plastic deformation (SPD) --- cross-channel extrusion (CCE) --- back pressure (BP) --- numerical simulation (FEM) --- physical modeling technique (PMT) --- metal–matrix composites (MMCs) --- carbon fiber --- mechanical properties --- z-pin reinforcement --- laminate --- titanium alloys --- high pressure torsion --- microhardness --- Cu–Ag alloy --- high-pressure torsion --- ultrafine microstructure --- phase dissolution --- microhardness --- friction stir welding --- heat treatment --- AA2519 --- microstructure --- fatigue --- fractography --- AZ91 --- magnesium alloys --- creep --- high pressure die casting --- additive manufacturing --- Ti-6Al-4V --- LENS --- mechanical characterization --- twin roll casting --- magnesium alloy --- calcium --- Mg-Zn-Al-Ca alloy --- texture --- flow curve --- processing map --- honeycomb structure --- additive manufacturing --- laser engineered net shaping --- LENS --- Ti6Al4V alloy --- energy absorption --- dynamic tests --- solidification thermal parameters --- Cu-Al-Ni-Fe bronze alloys --- hardness --- microhardness --- specific intermetallics --- MAX phase --- Ti3SiC2 --- composite --- high energy ball milling --- spark plasma sintering --- structure --- mechanical properties --- deformation behavior --- tribaloy-type alloy --- CoCrMoSi alloy coatings --- T-800 alloy --- Laves phase --- Laser Engineered Net Shaping (LENSTM) --- electron microscopy (in situ SEM) --- delamination --- metal matrix composites (MMCs) --- z-pinning

Micro/Nano Manufacturing

Authors: ---
ISBN: 9783039211692 9783039211708 Year: Pages: 208 DOI: 10.3390/books978-3-03921-170-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies.

Keywords

fluid jet polishing --- deterministic polishing --- variable pitch path --- residual error optimization --- path adaptability --- chatter identification --- three-dimensional elliptical vibration cutting --- empirical mode decomposition --- intrinsic mode function --- feature extraction --- micro-EDM molds --- micro-lens array --- contactless embossing --- friction coefficient --- micro 3D printing --- micro stereolithography --- process parameter optimization --- Taguchi’s method --- multi-objective particle swarm optimization --- flow control --- culture dish adapter --- small recess structure --- closed environment --- perfusion culture --- optical encoder --- grating --- blaze --- injection molding --- micro assembly --- active alignment --- opto-ASIC --- wafer-level optics --- antireflection nanostructure --- microlens array mold --- ultraprecision machining --- anodic aluminum oxide --- spatial uncertainty modeling --- additive manufacturing --- uncertainty quantification --- Image segmentation --- gaussian process modeling --- additive manufacturing --- selective laser melting --- surface roughness --- design of experiments --- Ti6Al4V --- SERS --- Surface-enhanced Raman scattering --- nanosphere array --- nanocone array --- hot embossing --- nanoimprinting --- plasma nitriding --- micro-nozzle --- micro-spring --- nitrogen supersaturation --- hardening --- hydrophobicity --- stiffness control --- product development --- conceptual design --- micro assembly --- data structure --- design for manufacturability --- low PC clinker --- Portland limestone ternary fiber–cement nanohybrids --- flexural strength --- TGA/dTG --- XRD --- MIP --- water impermeability tests --- micro and nano manufacturing --- micro-fluidics --- micro-optics --- micro and nano additive manufacturing --- micro-assembly --- surface engineering and interface nanotechnology --- micro factories --- micro reactors --- micro sensors --- micro actuators

Modern Grinding Technology and Systems

Author:
ISBN: 9783038429388 9783038429371 Year: Pages: 148 DOI: 10.3390/books978-3-03842-937-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This specialist edition features key innovations in the science and engineering of new grinding processes, abrasives, tools, machines, and systems for a range of important industrial applications. Topics written by invited, internationally recognized authors review the advances and present results of research over a range of well-known grinding processes. A significant introductory review chapter explores innovations to achieve high productivity and very high precision in grinding. The reviewed applications range from grinding systems for very large lenses and reflectors, through to medium size grinding machine processes, and down to grinding very small components used in MEMS . Early research chapters explore the influence of grinding wheel topography on surface integrity and wheel wear. A novel chapter on abrasive processes also addresses the finishing of parts produced by additive manufacturing through mass finishing. Materials to be ground range from conventional engineering steels to aerospace materials, ceramics, and composites. The research findings highlight important new results for avoiding material sub-surface damage. The papers compiled in this book include references to many source publications which will be found invaluable for further research, such as new features introduced into control systems to improve process efficiency. The papers also reflect significant improvements and research findings relating to many aspects of grinding processes, including machines, materials, abrasives, wheel preparation, coolants, lubricants, and fluid delivery. Finally, a definitive chapter summarizes the optimal settings for high precision and the achievement of centerless grinding stability.

Listing 1 - 10 of 18 << page
of 2
>>
Sort by
Narrow your search