Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Constitutive modeling of amorphous thermoplastic polymers with special emphasis on manufacturing processes

Author:
Book Series: Schriftenreihe des Instituts für Mechanik, Karlsruher Institut für Technologie ISSN: 23634936 ISBN: 9783731505501 Year: Volume: 2 Pages: XX, 184 p. DOI: 10.5445/KSP/1000056493 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This book deals with the development of constitutive models for the mechanical behavior of amorphous thermoplastic polymers at large strains. A special emphasis lies on the temperature dependency so that the altered material behavior at high temperatures can be considered. To implement the developed constitutive models the software tool AceGen is used by which program code is generated and optimized as well as derivatives are calculated automatically.

Recent Progress in Solid Dispersion Technology

Author:
ISBN: 9783039215010 / 9783039215027 Year: Pages: 204 DOI: 10.3390/books978-3-03921-502-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Amorphous solid dispersion (ASD) is a powerful formulation technology to improve oral absorption of poorly soluble drugs. Despite their being in existence for more than half a century, controlling ASD performance is still regarded as difficult because of ASD’s natural non-equilibrium. However, recent significant advances in ASD knowledge and technology may enable a much broader use of ASD technology. This Special Issue, which includes 3 reviews and 6 original articles, focuses on recent progresses in ASD technology in hopes of helping to accelerate developmental studies in the pharmaceutical industry. In striving for a deep understanding of ASD non-equilibrium behavior, the Special issue also delves into and makes progress in the theory of soft-matter dynamics.

Photovoltaic Materials and Electronic Devices

ISBN: 9783038422167 9783038422174 Year: Pages: XIV, 198 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-07-15 09:10:33
License:

Loading...
Export citation

Choose an application

Abstract

Given the state-of-the-art in solar photovoltaic (PV) technology and favorable financing terms, it is clear that PV has already obtained grid parity in specific locations [1]. Advances in the next generation of photovoltaic materials and photovoltaic devices can further reduce costs to enable all of humanity to utilize sustainable and renewable solar power [2]. This Special Issue of Materials will cover such materials, including modeling, synthesis, and evaluation of new materials and their solar cells.Specifically, this Special Issue will focus on five material technologies for advanced solar cells:1. New Concepts in PV Materials: Nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, low-cost III-V materials, bandgap engineering, hot-carrier effects, plasmonics, metamorphic materials, perovskite and related novel PV materials, novel light trapping, rectennas, quantum dots, carbon nanotubes, and graphene composites.2. Organic PV Materials: Polymer, hybrid and dye sensitized solar cells, high performance contacts, and lifetime degradation and mechanisms.3. Dye-Sensitized Solar Cells (DSSCs) Materials: Recent developments in dyes, working electrodes, technologies for device fabrications, and advances in new electrolytes.4. Amorphous, Nanostructured, and Thin Film Silicon PV Materials: Microstructure characterization, light induced degradation (SWE), large area and high deposition rates, novel processing routes, light trapping, multi-layers, and multi-junction devices.5. Passive Materials for all PV: Transparent conductive oxides (TCOs), encapsulation, connections, optics, glass, anti-reflection coatings (ARCs), alternative buffer layer materials, and contacts.

Nucleation of Minerals: Precursors, Intermediates and Their Use in Materials Chemistry

Author:
ISBN: 9783038970354 9783038970361 Year: Pages: X, 236 Language: english
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Sciences
Added to DOAB on : 2018-08-09 13:19:56
License:

Loading...
Export citation

Choose an application

Abstract

Nucleation is the key event in mineralisation, but a general molecular understanding of phase separation mechanisms is still missing, despite more than 100 years of research in this field. In recent years, many studies have highlighted the occurrence of precursors and intermediates, which seem to challenge the assumptions underlying classical theories of nucleation and growth. This is especially true for the field of biomineralisation, where bio-inspired strategies take advantage of the special properties of the precursors and intermediates for the generation of advanced materials. All of this has led to the development of "non-classical" frameworks, which, however, often lack quantitative expressions for the evaluation and prediction of phase separation, growth and ripening processes, and are under considerable debate. It is thus evident that there is a crucial need for research into the early stages of mineral nucleation and growth, designed for the testing, refinement, and expansion of the different existing notions. This Special Issue of Minerals aims to bring together corresponding studies from all these areas, dealing with precursors and intermediates in mineralisation with the hope that it may contribute to the achievement of a better understanding of nucleation precursors and intermediates, and their target-oriented use in materials chemistry.

Electrospun and Electrosprayed Formulations for Drug Delivery

Authors: ---
ISBN: 9783038979128 / 9783038979135 Year: Pages: 190 DOI: 10.3390/books978-3-03897-913-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

This book is comprised of important reviews and cutting-edge original research papers concerning electrospun and electrosprayed formulations in drug delivery. Electrospinning and electrospraying have, in recent years, attracted increasing attention in the pharmaceutical sector, with research in the area advancing rapidly. It is now possible to prepare extremely complex systems using multi-fluid processes, and to increase production rates to an industrial scale. Electrospun formulations can be produced under GMP conditions and are in clinical trials. In this volume, we explore a range of topics around electrospinning and electrospraying in controlled drug delivery. Four reviews cover the exciting potential of cyclodextrin-containing fibers and the many potential biomedical applications of electrospun fibers. The use of electrospinning to prepare amorphous systems and improve the dissolution rate and solubility of poorly soluble active ingredients is addressed, and the possibilities of such materials in tissue engineering are comprehensively covered. The six original research papers cover the effect of molecular properties on API release from Eudragit-based electrospun fibers; ferulic acid solid dispersions; electrospun medicines to treat psoriasis; scale up of electrospinning and its use to produce low-dose tablets; transepithelial permeation of drugs released from electrospun fibers, and the possibilities for the synergistic chemophotothermal treatment of cancer.

Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Authors: ---
ISBN: 9783039211791 / 9783039211807 Year: Pages: 214 DOI: 10.3390/books978-3-03921-180-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Kinetics and reactor modeling for heterogeneous catalytic reactions are prominent tools for investigating and understanding catalyst functionalities at nanoscale and the related rates of complex reaction networks. This book illustrates some examples related to the transformation of simple to more complex feedstocks, including different types of reactor designs, i.e., steady-state, transient plug flow reactors, and TAP reactors for which there is sometimes a strong gap in the operating conditions from ultra-high-vacuum to high-pressure conditions. In conjunction, new methodologies have emerged, giving rise to more robust microkinetics models. As exemplified, they include the kinetics and the dynamics of the reactors and span a large range of length and time scales. The objective of this Special Issue is to provide contributions that can illustrate recent advances and novel methodologies for elucidating the kinetics of heterogeneous reactions and the necessary multiscale approach for optimizing the reactor design. This book is dedicated to postgraduate and scientific researchers, and experts in heterogeneous catalysis. It may also serve as a source of original information for the elaboration of lessons on catalysis for Master students.

Mineral Surface Reactions at the Nanoscale

Author:
ISBN: 9783038978961 / 9783038978978 Year: Pages: 220 DOI: 10.3390/books978-3-03897-897-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geology --- Earth Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.

Green Synthesis of Nanomaterials

Author:
ISBN: 9783039217861 / 9783039217878 Year: Pages: 224 DOI: 10.3390/books978-3-03921-787-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called “green synthesis”, where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes—two key features determining their bioactivity.

Wide Bandgap Semiconductor Based Micro/Nano Devices

Author:
ISBN: 9783038978428 / 9783038978435 Year: Pages: 138 DOI: 10.3390/books978-3-03897-843-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Keywords

optical band gap --- tungsten trioxide film --- annealing temperature --- electrochromism --- AlGaN/GaN HEMT --- DIBL effect --- channel length modulation --- power amplifier --- W band --- high electron mobility transistors --- high electron mobility transistor (HEMT) --- AlGaN/GaN --- ohmic contact --- regrown contact --- ammonothermal GaN --- power amplifier --- I–V kink effect --- AlGaN/GaN HEMT --- large signal performance --- 4H-SiC --- MESFET --- ultrahigh upper gate height --- power added efficiency --- harsh environment --- space application --- 1T DRAM --- wide-bandgap semiconductor --- high-temperature operation --- TCAD --- amorphous InGaZnO (a-IGZO) --- thin-film transistor (TFT) --- positive gate bias stress (PGBS) --- passivation layer --- characteristic length --- edge termination --- silicon carbide (SiC) --- junction termination extension (JTE) --- breakdown voltage (BV) --- Ku-band --- GaN high electron mobility transistor (HEMT) --- power amplifier --- asymmetric power combining --- amplitude balance --- phase balance --- micron-sized patterned sapphire substrate --- growth of GaN --- sidewall GaN --- flip-chip light-emitting diodes --- distributed Bragg reflector --- light output power --- external quantum efficiency --- threshold voltage (Vth) stability --- gallium nitride (GaN) --- high electron mobility transistors (HEMTs) --- analytical model --- high-temperature operation --- T-anode --- GaN --- buffer layer --- anode field plate (AFP) --- cathode field plate (CFP) --- n/a

Synthesis and Applications of New Spin Crossover Compounds

Author:
ISBN: 9783039213610 / 9783039213627 Year: Pages: 254 DOI: 10.3390/books978-3-03921-362-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The crystal chemistry of spin crossover (SCO) behavior in coordination compounds can potentially be in association with smart materials—promising materials for applications as components of memory devices, displays, sensors and mechanical devices and, especially, actuators, such as artificial muscles. This Special Issue is devoted to various aspects of SCO and related research, comprising 18 interesting original papers on valuable and important SCO topics. Significant and fundamental scientific attention has been focused on the SCO phenomena in a wide research range of fields of fundamental chemical and physical and related sciences, containing the interdisciplinary regions of chemical and physical sciences related to the SCO phenomena. Coordination materials with bistable systems between the LS and the HS states are usually triggered by external stimuli, such as temperature, light, pressure, guest molecule inclusion, soft X-ray, and nuclear decay. Since the first Hofmann-like spin crossover (SCO) behavior in {Fe(py)2[Ni(CN)4]}n (py = pyridine) was demonstrated, this crystal chemistry motif has been frequently used to design Fe(II) SCO materials to enable determination of the correlations between structural features and magnetic properties.

Keywords

spin crossover --- spin transition --- cobalt(II) ion --- paramagnetic ligand --- aminoxyl --- switch --- mosaicity --- spin crossover --- X-ray diffraction --- fatigability --- single crystal --- phase transition --- structural disorder --- spin-crossover --- dinuclear triple helicate --- Fe(II) --- solvent effects --- metal dithiolene complexes --- [Au(dmit)2]?, [Au(dddt)2]? --- ion-pair crystals --- [Fe(III)(3-OMesal2-trien)]+ --- coordination complexes --- crystal structure --- magnetic properties --- magnetic susceptibility --- magnetization --- spin-crossover transition --- Fe(II) complex --- dipyridyl-N-alkylamine ligands --- high spin (HS) --- low spin (LS) --- spin cross-over (SCO) --- magnetic transition --- cobalt oxide --- spin polaron --- impurity effect --- spin-state crossover --- coordination polymer --- supramolecular isomerism --- spin crossover --- crystal engineering --- spin crossover --- X-ray absorption spectroscopy --- soft X-ray induced excited spin state trapping --- high spin --- spin-crossover --- LIESST effect --- hydrogen bonding --- ?-? interactions --- charge-transfer phase transition --- iron mixed-valence complex --- hetero metal complex --- dithiooxalato ligand --- substitution of 3d transition metal ion --- ferromagnetism --- dielectric response --- 57Fe Mössbauer spectroscopy --- Fe(III) coordination complexes --- hexadentate ligand --- Schiff base --- spin crossover --- UV-Vis spectroscopy --- SQUID --- EPR spectroscopy --- spin-crossover --- optical microscopy --- reaction diffusion --- spin crossover --- Fe(III) complex --- qsal ligand --- thermal hysteresis --- structure phase transition --- counter-anion --- solvate --- lattice energy --- optical conductivity spectrum --- spiral structure --- 1,2-bis(4-pyridyl)ethane --- supramolecular coordination polymer --- chiral propeller structure --- atropisomerism --- spin crossover --- iron(II) complexes --- C–H···? interactions --- magnetic properties --- thermochromism --- spin crossover --- linear pentadentate ligand --- iron(II) --- mononuclear --- 1,2,3-triazole --- crystal structure --- magnetic properties --- DFT calculation --- intermolecular interactions --- amorphous --- spin crossover --- Cu(II) complexes --- nitroxides --- phase transitions --- magnetostructural correlations --- iron (II), spin crossover --- X-ray diffraction --- coordination polymers --- n/a

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search