Search results: Found 8

Listing 1 - 8 of 8
Sort by
Advances in Groundwater Flow and Solute Transport: Pushing the Hidden Boundary

Authors: --- ---
ISBN: 9783039210749 / 9783039210756 Year: Pages: 196 DOI: 10.3390/books978-3-03921-075-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

In recent decades, the study of groundwater flow and solute transport has advanced into new territories that are beyond conventional theories, such as Darcy’s law and Fick’s law. The studied media have changed from permeable porous and fractured ones to much less permeable ones, such as clay and shale. The studied pore sizes have also changed from millimetres to micro-meters or even nano-meters. The objective of this Special Issue is to report recent advances in groundwater flow and solute transport that push the knowledge boundary into new territories which include, but are not limited to, flow and transport in sloping aquifer/hillslopes, coupled unsaturated and saturated flow, coupled aquifer-vertical/horizontal/slant well flow, interaction of aquifer with connected and disconnected rivers, non-Darcian flow, anomalous transport beyond the Fickian scheme, and flow and transport in extremely small pore spaces such as shale and tight sandstones. Contributions focusing on innovative experimental, numerical, and analytical methods for understanding unconventional problems, such as the above-listed ones, are encouraged, and contributions addressing flow and transport at interfaces of different media and crossing multiple temporal and spatial scales are of great value

Entropy in Dynamic Systems

Authors: ---
ISBN: 9783039216161 / 9783039216178 Year: Pages: 172 DOI: 10.3390/books978-3-03921-617-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.

Advanced Numerical Methods in Applied Sciences

Authors: ---
ISBN: 9783038976660 / 9783038976677 Year: Pages: 306 DOI: 10.3390/books978-3-03897-667-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Keywords

time fractional differential equations --- mixed-index problems --- analytical solution --- asymptotic stability --- conservative problems --- Hamiltonian problems --- energy-conserving methods --- Poisson problems --- Hamiltonian Boundary Value Methods --- HBVMs --- line integral methods --- constrained Hamiltonian problems --- Hamiltonian PDEs --- highly oscillatory problems --- boundary element method --- finite difference method --- floating strike Asian options --- continuous geometric average --- barrier options --- isogeometric analysis --- adaptive methods --- hierarchical splines --- THB-splines --- local refinement --- linear systems --- preconditioners --- Cholesky factorization --- limited memory --- Volterra integral equations --- Volterra integro–differential equations --- collocation methods --- multistep methods --- convergence --- B-spline --- optimal basis --- fractional derivative --- Galerkin method --- collocation method --- spectral (eigenvalue) and singular value distributions --- generalized locally Toeplitz sequences --- discretization of systems of differential equations --- higher-order finite element methods --- discontinuous Galerkin methods --- finite difference methods --- isogeometric analysis --- B-splines --- curl–curl operator --- time harmonic Maxwell’s equations and magnetostatic problems --- low rank completion --- matrix ODEs --- gradient system --- ordinary differential equations --- Runge–Kutta --- tree --- stump --- order --- elementary differential --- edge-histogram --- edge-preserving smoothing --- histogram specification --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods --- hyperbolic partial differential equations --- high order discontinuous Galerkin finite element schemes --- shock waves and discontinuities --- vectorization and parallelization --- high performance computing --- generalized Schur algorithm --- null-space --- displacement rank --- structured matrices --- stochastic differential equations --- stochastic multistep methods --- stochastic Volterra integral equations --- mean-square stability --- asymptotic stability --- numerical analysis --- numerical methods --- scientific computing --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods

Sustainability of Fossil Fuels

Author:
ISBN: 9783039212194 / 9783039212200 Year: Pages: 284 DOI: 10.3390/books978-3-03921-220-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The energy and fuel industries represent an extensive field for the development and implementation of solutions aimed at improving the technological, environmental, and economic performance of technological cycles. In recent years, the issues of ecology and energy security have become especially important. Energy is firmly connected with all spheres of human economic life but, unfortunately, it also has an extremely negative (often fatal) effect on the environment and public health. Depletion of energy resources, the complexity of their extraction, and transportation are also problems of a global scale. Therefore, it is especially important nowadays to try to take care of nature and think about the resources that are necessary for future generations. For scientific teams in different countries, the development of sustainable and safe technologies for the use of fuels in the energy sector will be a challenge in the coming decades

Keywords

coal --- slurry fuel --- combustion --- forest fuels --- biomass --- anthropogenic emission concentration --- municipal solid waste --- coal processing waste --- oil refining waste --- waste management --- composite fuel --- energy production --- fuel activation --- waste-derived fuel --- coal-water slurry --- laser pulse --- syngas --- aerosol --- two-component droplet --- heating --- evaporation --- explosive breakup --- disintegration --- droplet holder material --- hydraulic fracturing --- water retention in shale --- anionic surfactant --- shale gas --- supercritical CO2 --- tectonic coal --- pore structure --- methane desorption --- embedded discrete fracture model --- fractured reservoir simulation --- matrix-fracture transmissibility --- combustion --- methane hydrate --- hydrate dissociation --- PTV method --- transport of tracers --- linear drift effect --- convection–diffusion equation --- enhanced oil recovery --- closed-form analytical solution --- methane --- combustion mechanism --- mechanism reduction --- skeletal mechanism --- Bunsen burner --- covert fault zone --- genetic mechanism --- Qikou Sag --- structure evolution --- oil-controlling mode --- Riedel shear --- Mohr–Coulomb theory --- slurry fuel --- ignition --- combustion --- combustion chamber --- soaring of fuel droplets --- trajectories of fuel droplets --- decorated polyacrylamide --- physical properties --- displacement mechanism --- flow behavior --- enhanced recovery --- injection mode --- coal consumption forecasting --- support vector machine --- improved gravitational search algorithm --- grey relational analysis --- dual string completion --- gas lift --- gas lift rate --- split factor --- gas robbing --- gas lift optimization

Gas Flows in Microsystems

Authors: ---
ISBN: 9783039215423 / 9783039215430 Year: Pages: 220 DOI: 10.3390/books978-3-03921-543-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The last two decades have witnessed a rapid development of microelectromechanical systems (MEMS) involving gas microflows in various technical fields. Gas microflows can, for example, be observed in microheat exchangers designed for chemical applications or for cooling of electronic components, in fluidic microactuators developed for active flow control purposes, in micronozzles used for the micropropulsion of nano and picosats, in microgas chromatographs, analyzers or separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip, such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction can be increased by low-pressure conditions. The flows relate to the slip flow, transition or free molecular regimes and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven microflows offer new opportunities for designing original MEMS for gas pumping or separation. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel theoretical and numerical models or data, as well as on new experimental results and technics, for improving knowledge on heat and mass transfer in gas microflows. Papers dealing with the development of original gas MEMS are also welcome.

Keywords

pressure drop --- microchannels --- heat sinks --- slip flow --- electronic cooling --- Knudsen pump --- thermally induced flow --- gas mixtures --- direct simulation Monte Carlo (DSMC) --- microfluidic --- rarefied gas flows --- micro-scale flows --- Knudsen layer --- computational fluid dynamics (CFD) --- OpenFOAM --- Micro-Electro-Mechanical Systems (MEMS) --- Nano-Electro-Mechanical Systems (NEMS) --- backward facing step --- gaseous rarefaction effects --- fractal surface topography --- modified Reynolds equation --- aerodynamic effect --- bearing characteristics --- underexpansion --- Fanno flow --- flow choking --- compressibility --- binary gas mixing --- micro-mixer --- DSMC --- splitter --- mixing length --- control mixture composition --- preconcentrator --- microfluidics --- miniaturized gas chromatograph --- BTEX --- PID detector --- ultraviolet light-emitting diode (UV LED) --- spectrophotometry --- UV absorption --- gas sensors --- Benzene, toluene, ethylbenzene and xylene (BTEX) --- toluene --- hollow core waveguides --- capillary tubes --- gas mixing --- pulsed flow --- modular micromixer --- multi-stage micromixer --- modelling --- photoionization detector --- microfluidics --- microfabrication --- volatile organic compound (VOC) detection --- toluene --- supersonic microjets --- Pitot tube --- Knudsen pump --- thermal transpiration --- vacuum micropump --- rarefied gas flow --- kinetic theory --- microfabrication --- photolithography --- microfluidics --- resonant micro-electromechanical-systems (MEMS) --- micro-mirrors --- out-of-plane comb actuation --- fluid damping --- analytical solution --- FE analysis --- miniaturization --- gas flows in micro scale --- measurement and control --- integrated micro sensors --- advanced measurement technologies --- n/a

Advances in Mechanical Problems of Functionally Graded Materials and Structures

Authors: --- --- ---
ISBN: 9783039216581 / 9783039216598 Year: Pages: 262 DOI: 10.3390/books978-3-03921-659-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.

Keywords

functionally graded beams --- different moduli in tension and compression --- bimodulus --- analytical solution --- neutral layer --- quadratic solid–shell elements --- finite elements --- functionally graded materials --- thin structures --- geometrically nonlinear analysis --- functionally graded piezoelectric materials --- circular plate --- combined mechanical loads --- electroelastic solution --- ANFIS --- fuzzy logic --- clustering --- neural networks --- robotics and contact wear --- evanescent wave --- polynomial approach --- functionally graded piezoelectric-piezomagnetic material --- dispersion --- attenuation --- functional graded saturated material --- inhomogeneity --- Love wave --- dispersion --- attenuation --- porous materials --- truncated conical sandwich shell --- metal foam core layer --- non-linear buckling analysis --- orthogonal stiffener --- elastic foundation --- functionally graded plate --- power-law distribution --- high order shear deformation theory --- elastic foundation --- stepped FG paraboloidal shell --- general edge conditions --- spring stiffness technique --- free vibration characteristics --- Lamb wave --- functionally graded viscoelastic material --- minimum module approximation method --- damping coefficient --- functionally graded materials --- finite element analysis --- graded finite elements --- functionally graded materials --- inhomogeneous composite materials --- material design --- stress concentration factor --- failure and damage --- elliptical hole --- finite element method --- hollow disc --- external pressure --- residual stress --- residual strain --- flow theory of plasticity --- functionally graded materials --- elastoplastic analysis --- pure bending --- residual stress --- large strain

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214235 / 9783039214242 Year: Volume: 1 Pages: 578 DOI: 10.3390/books978-3-03921-424-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214730 / 9783039214747 Year: Volume: 2 Pages: 492 DOI: 10.3390/books978-3-03921-474-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (8)


License

CC by-nc-nd (8)


Language

eng (8)


Year
From To Submit

2019 (8)