Search results: Found 7

Listing 1 - 7 of 7
Sort by
Marine Bioactive Peptides: Structure, Function, and Therapeutic Potential

Author:
ISBN: 9783039215324 9783039215331 Year: Pages: 442 DOI: 10.3390/books978-3-03921-533-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue Book, “Marine Bioactive Peptides: Structure, Function, andTherapeutic Potential"" includes up-to-date information regarding bioactivepeptides isolated from marine organisms. Marine peptides have been found invarious phyla, and their numbers have grown in recent years. These peptidesare diverse in structure and possess broad-spectrum activities that have greatpotential for medical applications. Various marine peptides are evolutionaryancient molecular factors of innate immunity that play a key role in host defense.A plethora of biological activities, including antibacterial, antifungal, antiviral,anticancer, anticoagulant, endotoxin-binding, immune-modulating, etc., makemarine peptides an attractive molecular basis for drug design. This Special IssueBook presents new results in the isolation, structural elucidation, functionalcharacterization, and therapeutic potential evaluation of peptides found inmarine organisms. Chemical synthesis and biotechnological production of marinepeptides and their mimetics is also a focus of this Special Issue Book.

Keywords

sea cucumber --- ACE-inhibitory peptide --- molecular docking --- structure-activity relationship --- plastein reaction --- Gracilariopsis lemaneiformis --- ACE-inhibitory activity --- peptide --- molecular docking --- SHRs --- prostate cancer --- Anthopleura anjunae oligopeptide --- DU-145 cells --- PI3K/AKT/mTOR signaling pathway --- cod skin --- NA-inhibitory peptide --- influenza virus --- neuraminidase --- molecular docking --- adsorption --- host defense peptide --- antimicrobial peptide --- anti-LPS factor --- host?microbe relationship --- functional diversity --- invertebrate immunity --- crustacean --- antimicrobial activity --- antimicrobial peptide --- polychaeta --- innate immunity --- BRICHOS domain --- recombinant peptide --- ?-helix --- Rana-box --- nuclear magnetic resonance (NMR) --- antimicrobial peptide --- cytotoxicity --- ?-hairpin --- polyphemusins --- tachyplesins --- cell death --- signaling pathways --- Neptunea arthritica cumingii --- multi-functional peptides --- antioxidant activity --- ACE-inhibitory activity --- anti-diabetic activity --- Arenicola marina --- antimicrobial peptides --- arenicin --- complement --- C3a --- acid-sensing ion channel --- animal models --- pain relief --- toxin --- Ugr 9-1 --- APETx2 --- hairtail (Trichiurus japonicas) --- muscle --- peptide --- antioxidant activity --- half-fin anchovy hydrolysates --- Maillard reaction products --- antibacterial peptide --- identification --- self-production of hydrogen peroxide --- membrane damage --- Perinereis aibuhitensis --- decapeptide --- lung cancer --- cell proliferation --- apoptosis --- conotoxins --- conopeptides --- computational studies --- molecular dynamics --- machine learning --- docking --- review --- drug design --- ion channels --- Conus --- conotoxin --- transcriptome sequencing --- phylogeny --- venom duct --- abalone --- peptide --- vasculogenic mimicry --- metastasis --- MMPs --- HIF-1? --- dexamethasone --- myotube atrophy --- protein synthesis --- proteolytic system --- Pyropia yezoensis peptide --- PYP15 --- QAGLSPVR --- antihypertensive effect --- Caco-2 cell monolayer --- transport routes --- oyster zinc-binding peptide --- peptide-zinc complex --- caco-2 cells --- intestinal absorption --- zinc bioavailability --- Chlorella pyrenoidosa protein hydrolysate (CPPH) --- Chlorella pyrenoidosa protein hydrolysate-calcium chelate (CPPH-Ca) --- calcium absorption --- gene expression --- gut microbiota --- cone snails --- conotoxins --- ion channels --- function --- structure --- marine peptides --- arenicin-1 --- molecular symmetry --- structure–activity relationship --- antibacterial --- cytotoxic --- chemical synthesis --- molecular dynamics --- tilapia --- HUVEC --- angiotensin II --- NF-?B --- Nrf2 --- endothelial dysfunction --- conotoxin --- cone snail --- Conus --- Conus ateralbus --- Kalloconus --- n/a

Antimicrobial Resistance in Environmental Waters

Authors: ---
ISBN: 9783038976080 9783038976097 Year: Pages: 188 DOI: 10.3390/books978-3-03897-609-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue on Antimicrobial Resistance in Environmental Waters features 11 articles on the monitoring and surveillance of antimicrobial resistance (AMR) in natural aquatic systems (i.e., reservoirs, rivers), and effluent discharge from water treatment plants to assess the effectiveness of AMR removal and resulting loads in treated waters. Some of the key elements of AMR studies presented in this Special Issue highlight the underlying drivers of AMR contamination in the environment and the evaluation of the hazard imposed on aquatic organisms in receiving environments through ecological risk assessments. As described in this Issue, screening antimicrobial peptide (AMP) libraries for biofilm disruption and antimicrobial candidates are promising avenues for the development of new treatment options to eradicate resistance.

In-Cell NMR Spectroscopy: Biomolecular Structure and Function

Authors: ---
ISBN: 9783039282548 / 9783039282555 Year: Pages: 152 DOI: 10.3390/books978-3-03928-255-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue examines state-of-the-art in-cell NMR spectroscopy as it relates to biological systems of increasing complexity. The compendia of research and recent innovations from prominent laboratories in the field of solid state and solution in-cell NMR spectroscopy, metabolomics and technology development are presented. The work establishes in-cell NMR spectroscopy as the premier method for determining the structures and interaction capabilities of biological molecules at high resolution within the delicately intricate interior of living cells, and the means of utilizing cells as living laboratories to directly assess the effects of exogenous and endogenous stimuli on cell physiology.]

Venom and Toxin as Targeted Therapy

Author:
ISBN: 9783039211890 9783039211906 Year: Pages: 180 DOI: 10.3390/books978-3-03921-190-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Targeted therapy has developed significantly in the last one and half decades, prescribing specific medications for treatment of particular diseases, such as cancer, diabetes, and heart disease. One of the most exciting recent developments in targeted therapies was the isolation of disease-specific molecules from natural resources, such as animal venoms and plant metabolites/toxins, for use as templates for new drug motif designs. In addition, the study of venom proteins/peptides and toxins naturally targeted mammalian receptors and demonstrated high specificity and selectivity towards defined ion channels of cell membranes. Research has also focsed intensely on receptors. The focus of this Special Issue of Toxins addressed the most recent advances using animal venoms, such as frog secretions, bee/ant venoms and plant/fungi toxins, as medicinal therapy. Recent advances in venom/toxin/immunotoxins for targeted cancer therapy and immunotherapy, along with using novel disease-specific venom-based protein/peptide/toxin and currently available FDA-approved drugs for combinationtreatments will be discussed. Finally, we included an overview of select promising toad/snake venom-based peptides/toxins potentially able to address the forthcoming challenges in this field. Both research and review articles proposing novelties or overviews, respectively, were published in this Special Issue after rigorous evaluation and revision by expert peer reviewers.

Keywords

disintegrin --- blood vessel formation --- VEGF --- antioxidant enzymes --- oxidative stress biomarkers --- bicarinalin --- antimicrobial peptide --- Helicobacter pylori --- gastric cells --- bacterial adhesion --- SEM --- atopic dermatitis (AD) --- house dust mite extract (DFE) --- 2,4-dinitrochlorobenzene (DNCB) --- bee venom phospholipase A2 (bvPLA2) --- skin inflammation --- CD206 --- mannose receptor --- immunotoxin --- Moxetumomab pasudotox --- targeted therapy --- CD22 --- B cell non-Hodgkin lymphoma --- acute lymphoblastic leukemia --- mantle cell lymphoma --- ribosome-inactivating protein --- BLF1 --- eIF4A --- MYCN --- cancer --- neuroblastoma --- apoptosis --- antimicrobial peptide (AMP) --- dermaseptin --- anuran skin secretion --- drug design --- antimicrobial activity --- anticancer activity --- antiviral activity --- Bougainvillea --- bouganin --- cancer therapy --- immunotherapy --- immunotoxins --- ribosome-inactivating proteins --- rRNA N-glycosylase activity --- VB6-845 --- orellanine --- clearance --- fungal toxin --- half-life --- toad toxins --- Chansu --- Huachansu --- cane toad --- bufadienolides --- indolealkylamines --- inflammation --- cancer --- obsessive–compulsive disorder (OCD) --- snake venom --- cancer --- target therapy --- snake venom --- Malaysian cobras --- N. kaouthia --- N. sumatrana --- O. hannah --- anticancer --- Apis mellifera syriaca --- bee venom --- melittin --- LC-ESI-MS --- solid phase extraction --- in vitro effects --- frog --- mass spectrometry --- molecular cloning --- bombesin-related peptide --- smooth muscle --- Bee venom --- complement system --- decay accelerating factor --- atopic dermatitis --- complement dependent cytotoxicity --- membrane attack complex --- n/a

Arthropod Venom Components and Their Potential Usage

Authors: ---
ISBN: 9783039285402 9783039285419 Year: Pages: 404 DOI: 10.3390/books978-3-03928-541-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Public Health --- Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Thousands of arthropod species, ranging from arachnids (spiders and scorpions) to hymenopterans (ants, bees, and wasps) and myriapods (centipedes), are venomous and use their venoms for both defense and predation. These venoms are invariably harmful to humans, and some may cause serious injuries, e.g., those from scorpions, spiders, and wasps. Arthropods’ venoms are also known as rich sources of biologically active compounds and have attracted the attention of toxin researchers for years. In this century, venom component analysis has progressed considerable due to the advances in analytical techniques, in particular, mass spectrometry and next-generation deep (DNA and RNA) sequencing. As such, proteomic and peptidomic analyses using LC–MS have enabled the full analysis of venom components, revealing a variety of novel peptide and protein toxins sequences and scaffolds, potentially useful as pharmacological research tools and for the development of highly selective peptide ligands and therapeutic leads, like chlorotoxin. Due to their specificity for numerous ion-channel subtypes, including voltage- and ligand-gated ion channels, arthropod neurotoxins have been investigated to dissect and treat neurodegenerative diseases and control epileptic syndromes. This Special Issue collects information on such progress, encouraging contributions on the chemical and biological characterization of venom components, not only peptides and proteins, but also small molecules, their mechanisms of action, and the development of venom-derived peptide leads.

Keywords

ant --- venom --- mass spectrometry analysis --- pilosulin-like peptide --- phospholipases D --- metalloproteases --- Loxosceles spp. --- recombinant toxins --- hybrid immunogen --- neutralizing antibodies --- antivenoms --- LyeTxI-b --- Staphylococcus aureus --- keratitis --- AMP --- mastoparan --- Acinetobacter baumannii --- stent --- cantharidin --- blister beetle --- Berberomeloe majalis --- nematicide --- ixodicide --- antifeedant --- scorpion venom --- insecticidal peptide --- mass spectrometric analysis --- de novo sequencing --- Centruroides limpidus Karch --- proteome --- scorpion --- transcriptome --- venom toxicity --- brown spider --- venom --- Loxosceles --- toxins --- biotools --- drug targets --- novel therapeutics --- spider toxin --- directed disulfide bond formation --- Nav channel activity --- Nav1.7 --- pain target --- automated patch-clamp --- bee venom --- alternative treatment --- skin --- cutaneous disease --- mechanism --- chemotherapy --- cold allodynia --- mechanical allodynia --- melittin --- neuropathic pain --- oxaliplatin --- natural antibiotics --- piperidine heterocyclic amines --- industrial biotechnology --- LTQ Orbitrap Hybrid Mass Spectrometer --- myrmecology --- venom --- pain --- ants --- wasps --- bees --- Hymenoptera --- envenomation --- toxins --- peptides --- pharmacology --- Dinoponera quadriceps --- Formicidae --- Hymenoptera venom --- proteomics --- venom allergens --- ICK-like toxins --- melittin --- insect immune system --- apoptosis --- heart contractility --- Tenebrio molitor --- bee venom --- bioinformatics --- computational docking --- homology modelling --- ion channel structure --- protein–peptide interactions --- tertiapin --- venom peptides --- virtual screening --- small hive beetle --- solitary wasp --- venom --- antimicrobial peptide --- linear cationic ?-helical peptide --- amphipathic ?-helix structure --- channel-like pore-forming activity --- antimicrobial peptide --- venom --- arthropod --- malaria --- Chagas disease --- human African trypanosomiasis --- leishmaniasis --- toxoplasmosis --- venom peptides --- FMRF-amide --- insect neurotoxin --- protons --- pH regulation --- acid-sensing ion channels --- acid-gated currents --- chronic pain --- ICK peptide --- knottins --- NaV --- spider venom --- voltage-gated sodium channel --- n/a

Polymeric Systems as Antimicrobial or Antifouling Agents

Authors: ---
ISBN: 9783039284566 / 9783039284573 Year: Pages: 400 DOI: 10.3390/books978-3-03928-457-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated.

Keywords

cationic polymers --- imidization --- quaternization --- antimicrobial properties --- hemolytic activity --- coatings from nanoparticles --- biocompatible polymer --- antimicrobial polymer --- dynamic light scattering --- coatings wettability --- microbicidal coatings --- bacteria viability --- bactericidal coatings --- Escherichia coli --- Staphylococcus aureus --- Acinetobacter baumannii --- multidrug-resistant --- antimicrobial peptide --- antibiofilm activity --- physiological salt --- biofilm --- anti-biofilm surface --- surface functionalization --- ?-chymotrypsin --- proteinase --- antimicrobial polymers --- quaternary ammonium --- 2-hydroxyethyl methacrylate --- thermal stability --- polymers --- antibacterial --- drug delivery --- periodontitis --- periodontal biofilms --- polyamide 11 --- antibacterial --- polymeric biocide --- thermal stability --- biofilm --- antifouling --- copper paint --- additives --- biofilm --- lipopeptides --- biofilm --- persister cells --- ocular infections --- biofilm on contact lenses --- cuprous oxide nanoparticles --- linear low-density polyethylene --- composites --- adhesives --- antibacterial activity --- water disinfection --- active packaging --- antimicrobial peptides --- food shelf-life --- foodborne pathogens --- plastic materials --- antibacterial peptides --- halictine --- circular dichroism --- fluorescence --- infrared spectroscopy --- segmented polyurethanes --- polyethylene glycol --- microbial biofilm --- antifouling materials --- medical device-related infections --- wound dressings --- additive manufacturing --- antibacterial polymers --- biocompatible systems --- drug delivery systems --- 3D printing --- amorphous materials --- ordered mesoporous silica --- sol-gel preparation --- drug carrier --- multifunctional hybrid systems --- olive mill wastewater --- antibacterial properties --- layered double hydroxides --- bionanocomposites --- acrylates --- antibacterial activity --- copolymerization --- polymeric films --- polymerizable quaternary ammonium salts --- quaternary ammonium salts --- UV-induced polymerization --- antimicrobial resistance --- antimicrobial polymers --- ESKAPE pathogens --- anti-biofilm surfaces --- polymeric surfaces --- biofilm methods --- biofilm analysis --- biofilm devices --- n/a

Transmucosal Absorption Enhancers in the Drug Delivery Field

Authors: --- ---
ISBN: 9783039218486 9783039218493 Year: Pages: 406 DOI: 10.3390/books978-3-03921-849-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics --- Medicine (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Development of strategies to assist the movement of poorly permeable molecules across biological barriers has long been the goal of drug delivery science. In the last three decades, there has been an exponential increase in advanced drug delivery systems that aim to address this issue. However, most proprietary delivery technologies that have progressed to clinical development are based on permeation enhancers (PEs) that have a history of safe use in man. This Special Issue entitled “Transmucosal Absorption Enhancers in the Drug Delivery Field” aims to present the current state-of-the-art in the application of PEs to improve drug absorption. Emphasis is placed on identification of novel permeation enhancers, mechanisms of barrier alteration, physicochemical properties of PEs that contribute to optimal enhancement action, new delivery models to assess PEs, studies assessing safety of PEs, approaches to assist translation of PEs into effective oral, nasal, ocular and vaginal dosage forms and combining PEs with other delivery strategies.

Keywords

absorption enhancers --- sugar-based surfactants --- biocompatibility studies --- transmucosal drug delivery --- intestinal permeation enhancers --- sodium cholate (NaC) --- N-dodecyl-?-D-maltoside (DDM) --- small intestine --- enterocyte --- brush border --- tryptophan --- oral delivery --- insulin --- GLP-1 --- intestinal absorption --- amino acid --- cell-penetrating peptide --- combined microsphere --- chitosan --- cyclodextrin --- nasal delivery --- nose to brain transport --- penetration enhancer --- nasal formulation --- in vivo studies --- nose to brain delivery --- antiepileptic drug --- drug delivery --- block copolymers --- thermogel system --- chitosan derivatives --- amphiphilic polymers --- polymeric micelles --- quaternization --- curcumin --- intestinal delivery --- mucoadhesiveness --- cervicovaginal tumors --- cationic functionalization --- imatinib --- nanocrystals --- in situ hydrogel --- bioenhancer --- cytochrome P450 --- drug absorption enhancer --- efflux --- metabolism --- P-glycoprotein --- pharmacokinetic interaction --- tight junction --- Aloe vera --- gel --- whole leaf --- absorption enhancement --- Caco-2 --- confocal laser scanning microscopy --- F-actin --- FITC-dextran --- tight junctions --- transepithelial electrical resistance --- permeation enhancer --- oral delivery --- formulation --- permeability --- safety --- simulated intestinal fluid --- hydrophobization --- epithelium --- compound 48/80 --- chitosan --- nanoparticles --- mast cell activator --- vaccine adjuvant --- nasal vaccination --- absorption enhancer --- antimicrobial peptide --- Caco-2 --- claudin --- cell-penetrating peptide (CPP) --- drug delivery --- intestinal epithelial cells --- KLAL --- PN159 --- tight junction modulator --- oral macromolecule delivery --- oral peptides --- sodium caprate --- salcaprozate sodium --- epithelial permeability --- epithelial transport --- nasal permeability --- nose-to-brain --- simvastatin --- nanocapsules --- mucoadhesion --- CNS disorders --- chitosan --- nasal --- pulmonary --- drug administration --- absorption enhancers --- nanoparticle --- and liposome --- absorption enhancer --- gemini surfactant --- intestinal absorption --- poorly absorbed drug --- Caco-2 cells --- PTH 1-34 --- teriparatide --- nasal delivery --- pharmacokinetics --- osteoporosis --- man --- sheep --- clinical trial --- preclinical --- Caco-2 --- intestinal absorption --- nanomedicine --- nanoparticle --- oral delivery --- transferrin --- ocular drug delivery --- cornea --- penetration enhancers --- ocular conditions --- ophthalmology --- permeation enhancers --- absorption modifying excipients --- oral delivery --- nasal delivery --- ocular delivery --- vaginal delivery --- transmucosal permeation

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (7)


License

CC by-nc-nd (7)


Language

english (5)

eng (2)


Year
From To Submit

2020 (4)

2019 (3)