Search results: Found 12

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Einfluss der Leitungselektronen auf die Dynamik atomarer Tunnelsysteme in ungeordneten Festkörpern: Relaxationsprozesse in metallischen Gläsern und ungeordneten dünnen Aluminiumoxid-Schichten

Author:
Book Series: Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut ISSN: 21919925 ISBN: 9783731508700 Year: Volume: 22 Pages: II, 98 p. DOI: 10.5445/KSP/1000087939 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The speed of sound in metallic glasses and the permittivity of dielectric alumina layers show the typical low-temperature behavior of amorphous solids. Acoustic measurements from a few kHz to GHz show the influence of the conduction electrons in a massive bulk metallic glass. Measurements of the permittivity at a few kHz surprisingly show an influence of the electrons on the properties of an insulating layer.

Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit

Authors: --- ---
ISBN: 9783039212576 9783039212583 Year: Pages: 182 DOI: 10.3390/books978-3-03921-258-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Devastating seismic events occurring all over the world keep raising the awareness of the scientific, technical and political communities to the need of identifying assets at risk and developing more effective and cost-efficient seismic risk mitigation strategies. Significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques with potential use in risk assessment, management and mitigation. Nevertheless, there is still much to be done, particularly with regard to existing buildings, most of them built without anti-seismic provisions. The wide variety of construction and structural systems, associated with the complex behaviour of their materials, greatly limit the application of current codes and building standards to the existing building stock. To tackle this issue, there is a fundamental need for developing multidisciplinary research that can lead to the development of more sophisticated and reliable methods of analysis, as well as to improved seismic retrofitting techniques compliant with buildings conservation principles. This book intends to contribute to the aforementioned goal by stimulating the exchange of ideas and knowledge on the assessment and reduction of the seismic vulnerability of existing buildings. 10 high quality contributions authored by international experts from Italy, Portugal, Morocco, Nepal, Czech Republic and Spain are included herein. All contributions pursue the protection of existing buildings by considering the most updated methods and advanced solutions emerging from different fields of expertise.

Sports Materials

Authors: --- --- ---
ISBN: 9783039281626 9783039281633 Year: Pages: 166 DOI: 10.3390/books978-3-03928-163-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Advances in materials are crucial to the development of sports equipment, from tennis rackets to skis to running shoes. Materials-driven improvements in equipment have helped athletes perform better, while enhancing safety and making sport more accessible and enjoyable. This book brings together a collection of 10 papers on the topic of sports materials, as published in a Special Issue of Applied Sciences. The papers within this book cover a range of sports, including golf, tennis, table tennis and baseball. State-of-the-art engineering techniques, such as finite element modelling, impact testing and full-field strain measurement, are applied to help further our understanding of sports equipment mechanics and the role of materials, with a view to improving performance, enhancing safety and facilitating informed regulatory decision making. The book also includes papers that describe emerging and novel materials, including auxetic materials with their negative Poisson’s ratio (fattening when stretched) and knits made of bamboo charcoal. This collection of papers should serve as a useful resource for sports engineers working in both academia and industry, as well as engineering students who are interested in sports equipment and materials.

Advances in Mechanical Problems of Functionally Graded Materials and Structures

Authors: --- --- ---
ISBN: 9783039216581 9783039216598 Year: Pages: 262 DOI: 10.3390/books978-3-03921-659-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.

Keywords

functionally graded beams --- different moduli in tension and compression --- bimodulus --- analytical solution --- neutral layer --- quadratic solid–shell elements --- finite elements --- functionally graded materials --- thin structures --- geometrically nonlinear analysis --- functionally graded piezoelectric materials --- circular plate --- combined mechanical loads --- electroelastic solution --- ANFIS --- fuzzy logic --- clustering --- neural networks --- robotics and contact wear --- evanescent wave --- polynomial approach --- functionally graded piezoelectric-piezomagnetic material --- dispersion --- attenuation --- functional graded saturated material --- inhomogeneity --- Love wave --- dispersion --- attenuation --- porous materials --- truncated conical sandwich shell --- metal foam core layer --- non-linear buckling analysis --- orthogonal stiffener --- elastic foundation --- functionally graded plate --- power-law distribution --- high order shear deformation theory --- elastic foundation --- stepped FG paraboloidal shell --- general edge conditions --- spring stiffness technique --- free vibration characteristics --- Lamb wave --- functionally graded viscoelastic material --- minimum module approximation method --- damping coefficient --- functionally graded materials --- finite element analysis --- graded finite elements --- functionally graded materials --- inhomogeneous composite materials --- material design --- stress concentration factor --- failure and damage --- elliptical hole --- finite element method --- hollow disc --- external pressure --- residual stress --- residual strain --- flow theory of plasticity --- functionally graded materials --- elastoplastic analysis --- pure bending --- residual stress --- large strain

Turbulence in River and Maritime Hydraulics

Authors: --- ---
ISBN: 9783038975946 Year: Pages: 296 DOI: 10.3390/books978-3-03897-595-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Understanding of the role of turbulence in controlling transport processes is of paramount importance for the preservation and protection of aquatic ecosystems, the minimization of the deleterious consequences of anthropogenic activity, and the successful sustainable development of river and maritime areas. In this context, the present Special Issue collects 15 papers which provide a representation of the present understanding of turbulent processes and their effects in river and maritime environments. The presented collection of papers is not exhaustive, but it highlights the key priority areas and knowledge gaps in this field of research. The published papers present the state-of-the-art knowledge of complex environmental flows which are useful for researchers and practitioners. The paper contents are an overview of some recent topics of research and an exposure of the current and future challenges associated with these topics.

Keywords

breaking waves --- turbulence invariants --- laboratory experiments --- flow-through system --- tidal inlets --- residence time --- coastal lagoon --- MIKE 3 FM (HD & --- TR) --- MIKE 21 FM (HD) --- dense jet --- current flow --- velocity --- trajectory --- turbulence --- dissipation --- rivers --- meanders --- turbulence --- secondary motion --- prediction --- bedrock canyon --- ADCP --- eddy viscosity --- bed shear stress --- spatial analysis --- smoothed particle hydrodynamics models --- physical modelling --- plunging breaking waves --- vorticity --- turbulent jet --- wave–current interaction --- spectral dissipation --- bottom friction --- numerical model --- hydrodynamic model --- spectral model --- wave attenuation --- energy dissipation --- drag coefficient --- flexible vegetation --- Spartina maritima --- vegetation patch --- wake region --- submerged ratio --- SVF --- channel confluences --- junction angle --- flow deflection zone --- flow retardation zone --- flow separation zone --- numerical modelling --- PANORMUS --- jets --- waves --- turbulence --- mixing --- diffusion --- advection --- river mouth --- flow mixing --- nonlinear shallow water equations --- macrovortices --- sub-grid turbulence --- seabed friction --- flow resistance --- roughness --- gravel-bed rivers --- casting technique --- CFD --- Kelvin–Helmholtz --- billow --- lobe --- cleft --- gravity current --- surface waves --- inclined negatively buoyant jets --- regular waves --- dilution --- sea discharges --- rivers --- maritime areas --- turbulent processes

Advances in Electrochemical Energy Materials

Authors: ---
ISBN: 9783039286423 / 9783039286430 Year: Pages: 156 DOI: 10.3390/books978-3-03928-643-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical energy storage is becoming essential for portable electronics, electrified transportation, integration of intermittent renewable energy into grids, and many other energy and power applications. The electrode materials and their structures, in addition to the electrolytes, play key roles in supporting a multitude of coupled physicochemical processes that include electronic, ionic, and diffusive transport in electrode and electrolyte phases, electrochemical reactions and material phase changes, as well as mechanical and thermal stresses, thus determining the storage energy density and power density, conversion efficiency, performance lifetime, and system cost and safety. Different material chemistries and multiscale porous structures are being investigated for high performance and low cost. The aim of this Special Issue is to report the recent advances in materials used in electrochemical energy storage that encompass supercapacitors and rechargeable batteries.

Outstanding Topics in Ocean Optics

Authors: ---
ISBN: 9783038977049 9783038977056 Year: Pages: 454 DOI: 10.3390/books978-3-03897-705-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Oceanography
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Ocean optics is a branch of oceanography which is firmly embedded in studies of a great variety of ocean science and engineering questions. The interactive nature between radiative transfer of light and various dissolved and particulate constituents of seawater is at the core of ocean optics science and applications. The transfer of radiant solar energy has vital implications to life and climate on Earth, and the large variety of subjects of ocean optics ranges from the subtle problems of physical optics to optical remote sensing towards a better understanding of ocean biology, biogeochemistry and ecosystems and their roles in the Earth's system processes. The intention of this book is to present a collection of papers that generally share a common denominator of frontier topics in ocean optics which are unique, uncommon or outstanding in the literature, and to provide a balanced view of the extraordinary breadth of research in this field. Topics as diverse as measurements and modeling of radiative transfer, light fields, light scattering and polarization, ocean color, benthic optical properties, and the use of optics for characterizing seawater constituents are addressed in this book. The book is expected to be of interest and useful to a broad audience of professional ocean scientists, engineers and advanced students with an interest in ocean optics and applications of optical methods in oceanography.

Keywords

forward modeling --- suspended matter --- marine particles --- fractal structure --- organic carbon --- chlorophyll-a --- oceanic light field --- irradiance quartet --- apparent optical properties --- inelastic processes --- Gershun equation --- ocean euphotic zone --- phytoplankton pigments --- ocean color --- remote sensing --- MERIS --- global oceans --- light scattering --- light scattering by pure water --- light scattering by pure seawater --- anomalous properties of water --- remote-sensing reflectance --- bathymetry --- hyperspectral --- bottom mapping --- radiative transfer --- apparent optical properties --- 3D Monte Carlo numerical simulations --- downward irradiance --- upward radiance --- sea ice heterogeneity --- vertical attenuation coefficient --- melt ponds --- remote sensing --- coral reef --- sensor noise --- retrieval uncertainty --- particle dynamics --- optical properties --- suspended sediment --- phytoplankton --- PFT --- ocean colour --- satellite radiometry --- radiative transfer --- optical modelling --- vector radiative transfer --- polarization --- coupled systems --- atmosphere --- ocean --- forward modeling --- inverse problems --- marine optics --- inherent optical properties --- volume scattering function --- degree of linear polarization --- marine particles --- light scattering measurements --- LISST-VSF instrument --- ocean optics --- ocean color --- remote sensing --- radiative transfer approximation --- volume scattering function --- NASA PACE mission --- polarization --- ocean optics --- upwelling radiance distribution --- remote sensing --- remote sensing --- hyperspectral --- shallow water --- coral --- derivative --- radiative transfer --- canopy --- ocean color database --- oceanic carbon --- chromophoric dissolved organic matter --- dissolved organic carbon --- CDOM spectral slope --- ocean color remote sensing --- algorithm development --- ocean color algorithm validation --- ocean optics --- CDOM climatology --- CDOM and ENSO --- machine learning --- ocean optics --- backscattering ratio --- phytoplankton --- coated-sphere model --- bulk refractive index --- seawater component --- natural organic matter --- DOM --- FDOM --- CDOM --- Gelbstoff --- EEMS --- PARAFAC --- marine sensors --- Kallemeter --- FerryBox --- Trondheimsfjord --- Norway --- ocean optics --- light scattering --- Mueller matrix --- volume and surface integral methods

Solar Radiation, Modelling and Remote Sensing

Authors: ---
ISBN: 9783039210046 9783039210053 Year: Pages: 230 DOI: 10.3390/books978-3-03921-005-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Accurate solar radiation knowledge and its characterization on the Earth’s surface are of high interest in many aspects of environmental and engineering sciences. Modeling of solar irradiance from satellite imagery has become the most widely used method for retrieving solar irradiance information under total sky conditions, particularly in the solar energy community. Solar radiation modeling, forecasting, and characterization continue to be broad areas of study, research, and development in the scientific community. This Special Issue contains a small sample of the current activities in this field. Both the environmental and climatology community, as the solar energy world, share a great interest in improving modeling tools and capabilities for obtaining more reliable and accurate knowledge of solar irradiance components worldwide. The work presented in this Special Issue also remarks on the significant role that remote sensing technologies play in retrieving and forecasting solar radiation information.

Keywords

Himawari-8/Advanced Meteorological Imager (Himawari-8/AHI) --- Geostationary Korea Multi-Purse Satellite/Advanced Meteorological Imager (GK-2A/AMI) --- broadband albedo at the top of the atmosphere (TOA albedo) --- reflected shortwave radiation at the top of the atmosphere (RSR) --- Clouds and the Earth Radiant Energy System (CERES) --- surface solar radiation --- remote sensing --- validation --- India --- solar radiation trends --- Solis scheme --- clear sky --- radiation model --- radiative transfer --- high turbidity --- water vapor --- solar radiation --- understory light condition --- forest canopy --- subcanopy light regime --- PAR --- shortwave radiation --- light attenuation --- remote sensing --- solar irradiance --- nowcasting --- AMESIS --- MSG --- SEVIRI --- radiance --- brightness temperature --- motion vector field --- photosynthetically active radiation --- global horizontal irradiance --- clustering analysis --- Kato bands --- solar irradiance --- MSG --- SEVIRI --- HRV --- AMESIS --- solar radiation --- global horizontal irradiance --- satellite-derived dataset --- validation --- solar energy --- aerosol impact --- earth observation --- clear sky index --- solar irradiance --- downward shortwave radiation --- global horizontal irradiance --- solar variability --- cloud categories --- GOES satellites --- evapotranspiration --- insolation --- surface energy balance --- data fusion --- water resource management --- California Delta --- solar radiation --- radiative transfer --- solar energy systems --- solar radiation forecasting

Efficiency of Bank Filtration and Post-Treatment

Authors: ---
ISBN: 9783039213054 9783039213061 Year: Pages: 352 DOI: 10.3390/books978-3-03921-306-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Riverbank filtration (RBF) schemes for the production of drinking water are increasingly challenged by new constituents of concern, such as organic micropollutants and pathogens in the source water and hydrological flow variations due to weather extremes. RBF and new technology components are integrated and monitoring and operating regimes are adopted to further optimize water treatment in bank filtration schemes for these new requirements. This Special Issue presents results from the EU project AquaNES “Demonstrating synergies in combined natural and engineered processes for water treatment systems” (www.aquanes.eu). Additionally, papers from other research groups cover the efficiency of bank filtration and post-treatment, advantages and limitations of combining natural and engineered processes, parameter-specific assessment of removal rates during bank filtration, and the design and operation of RBF wells. The feasibility, design, and operation of RBF schemes under specific site conditions are highlighted for sites in the US, India, and South Korea

Keywords

riverbank filtration --- removal efficacy --- dissolved organic carbon (DOC) --- pesticides --- pharmaceutical residues --- riverbank filtration --- organic matter degradation --- manganese --- riverbed --- climate change --- floods --- droughts --- column experiments --- PHREEQC --- decentralized capillary nanofiltration --- anoxic --- suboxic --- organic micropollutants --- bank filtrate --- groundwater --- sulphate --- dissolved organic matter --- high temperature --- sub-oxic conditions --- organic matter composition --- PARAFAC-EEM --- LC-OCD --- redox sensitivity --- micropollutants --- oxypurinol --- gabapentin --- river bank filtration --- hydrological trends --- sustainable water production --- well structure remodeling --- point-bar alluvial setting --- riverbank filtration --- site investigation --- hydrochemistry --- subsurface geology --- riverbank filtration --- organic micropollutants --- water quality --- environmental monitoring --- riverbank filtration --- collector wells --- performance --- entrance velocity --- river bank filtration --- attenuation --- organic micropollutants --- pharmaceuticals --- riverbank filtration --- small communities --- disinfection by-products --- trihalomethanes --- riverbank filtration (RBF) --- Krishna River --- southern India --- water treatment --- water quality --- salinity --- river bank filtration --- ultrafiltration --- surface water treatment --- energy efficiency --- out/in membrane comparison --- inline electrolysis --- bank filtration --- biofilm --- clogging --- filter cake --- pathogen barrier --- pressure loss --- slow sand filtration --- electro-chlorination --- smart villages --- disinfection --- river bank filtration --- rural water supply, online monitoring --- dissolved organic matter --- fluorescence excitation-emission matrix --- LC-OCD --- Nakdong River --- riverbank filtration --- bank filtration --- drinking water treatment --- inorganic chemicals --- organic micropollutants --- Ganga --- Yamuna --- Damodar --- riverbank filtration --- water quality --- organic carbon --- nitrate --- heavy metals --- microorganisms --- riverbank filtration --- riverside water source --- analytical method --- mirror-image method --- optimization --- riverbank filtration --- water quality --- bank filtrate portion --- iron --- manganese --- microorganisms --- system costs --- water supply --- storage tank --- drinking water hydropower --- turbine --- energy generation --- renewable energy

Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters

Authors: --- ---
ISBN: 9783039212392 9783039212408 Year: Pages: 334 DOI: 10.3390/books978-3-03921-240-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.

Keywords

conifer forest --- leaf area index --- smartphone-based method --- canopy gap fraction --- terrestrial laser scanning --- forest inventory --- density-based clustering --- forest aboveground biomass --- root biomass --- tree heights --- GLAS --- artificial neural network --- allometric scaling and resource limitation --- structure from motion (SfM) --- 3D point cloud --- remote sensing --- local maxima --- fixed tree window size --- managed temperate coniferous forests --- point cloud --- spectral information --- structure from motion (SfM) --- unmanned aerial vehicle (UAV) --- chlorophyll fluorescence (ChlF) --- drought --- Mediterranean --- photochemical reflectance index (PRI) --- photosynthesis --- R690/R630 --- recovery --- BAAPA --- remote sensing --- household survey --- forest --- farm types --- automated classification --- sampling design --- adaptive threshold --- over and understory cover --- LAI --- leaf area index --- EPIC --- simulation --- satellite --- MODIS --- biomass --- evaluation --- southern U.S. forests --- VIIRS --- leaf area index (LAI) --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- MODIS --- consistency --- uncertainty --- evaluation --- downscaling --- Pléiades imagery --- unmanned aerial vehicle --- stem volume estimation --- remote sensing --- clumping index --- leaf area index --- trunk --- terrestrial LiDAR --- HemiView --- forest above ground biomass (AGB) --- polarization coherence tomography (PCT) --- P-band PolInSAR --- tomographic profiles --- canopy closure --- global positioning system --- hemispherical sky-oriented photo --- signal attenuation --- geographic information system --- digital aerial photograph --- aboveground biomass --- leaf area index --- photogrammetric point cloud --- recursive feature elimination --- machine-learning --- forest degradation --- multisource remote sensing --- modelling aboveground biomass --- random forest --- Brazilian Amazon --- validation --- phenology --- NDVI --- LAI --- spectral analyses --- European beech --- altitude --- forests biomass --- remote sensing --- REDD+ --- random forest --- Tanzania --- RapidEye

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Narrow your search