Search results:
Found 2
Listing 1  2 of 2 
Sort by

Choose an application
A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures.
Banach space  weightedNewton method  local convergence  Fréchetderivative  ball radius of convergence  Nondifferentiable operator  nonlinear equation  divided difference  Lipschitz condition  convergence order  local and semilocal convergence  scalar equations  computational convergence order  Steffensen’s method  basins of attraction  nonlinear equations  multipleroot solvers  Traub–Steffensen method  fast algorithms  Multiple roots  Optimal iterative methods  Scalar equations  Order of convergence  simple roots  Newton’s method  computational convergence order  nonlinear equations  split variational inclusion problem  generalized mixed equilibrium problem  fixed point problem  maximal monotone operator  left Bregman asymptotically nonexpansive mapping  uniformly convex and uniformly smooth Banach space  nonlinear equations  multiple roots  derivativefree method  optimal convergence  multiple roots  optimal iterative methods  scalar equations  order of convergence  Newton–HSS method  systems of nonlinear equations  semilocal convergence  local convergence  convergence order  Banach space  iterative method  nonlinear equations  Chebyshev’s iterative method  fractional derivative  basin of attraction  nonlinear equations  iterative methods  general means  basin of attraction
Choose an application
This book includes papers in crossdisciplinary applications of mathematical modelling: from medicine to linguistics, social problems, and more. Based on cuttingedge research, each chapter is focused on a different problem of modelling human behaviour or engineering problems at different levels. The reader would find this book to be a useful reference in identifying problems of interest in social, medicine and engineering sciences, and in developing mathematical models that could be used to successfully predict behaviours and obtain practical information for specialised practitioners. This book is a mustread for anyone interested in the new developments of applied mathematics in connection with epidemics, medical modelling, social issues, random differential equations and numerical methods.
human behaviour  organisational risk  multicriteria decisionmaking  DEMATEL  bottling process  cellular automata  game of life  brain dynamics  random nonautonomous second order linear differential equation  mean square analytic solution  random power series  uncertainty quantification  systems of nonlinear equations  iterative methods  Newton’s method  order of convergence  computational efficiency  basin of attraction  F110 frigate  decisionmaking  ASW  antitorpedo decoy  AHP  uncertainty modelling  Chikungunya disease  mathematical modeling  nonlinear dynamical systems  numerical simulations  parameter estimation  Markov chain Monte Carlo  block preconditioner  generalized eigenvalue problem  neutron diffusion equation  modified block Newton method  bone repair  macrophages  immune system  cytokines  stem cells  exponential polynomial  discrete dynamical systems  convergence  Hidden Markov models  mathematical linguistics  Voynich Manuscript  IPV  violence index  independence index  model  ode
Listing 1  2 of 2 
Sort by

2019 (2)