Search results:
Found 8
Listing 1  8 of 8 
Sort by

Choose an application
One might say that ordinary differential equations (notably, in Isaac Newton’s analysis of the motion of celestial bodies) had a central role in the development of modern applied mathematics. This book is devoted to research articles which build upon this spirit: combining analysis with the applications of ordinary differential equations (ODEs). ODEs arise across a spectrum of applications in physics, engineering, geophysics, biology, chemistry, economics, etc., because the rules governing the timevariation of relevant fields is often naturally expressed in terms of relationships between rates of change. ODEs also emerge in stochastic models—for example, when considering the evolution of a probability density function—and in large networks of interconnected agents. The increasing ease of numerically simulating large systems of ODEs has resulted in a plethora of publications in this area; nevertheless, the difficulty of parametrizing models means that the computational results by themselves are sometimes questionable. Therefore, analysis cannot be ignored. This book comprises articles that possess both interesting applications and the mathematical analysis driven by such applications.
coupled system  green’s function  integral boundary conditions  Ulam’s stability  nonlinear dynamics  bifurcation analysis  ion current interactions  EADs  MATCONT  SIR epidemic model  age structure  endemic equilibrium  stability  basic reproduction number  surface of section  transport  heteroclinic tangle  n/a
Choose an application
Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled “Methods in Computational Biology”, is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections:•Reviews of Computational Methods•Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels•The Interface of Biotic and Abiotic Processes•Processing of Large Data Sets for Enhanced Analysis•Parameter Optimization and Measurement
biomass reaction  computational biology  macromolecular composition  metabolic model  methods  metabolic network visualization  metabolic modelling  elementary flux modes visualization  flux balance analysis  ADAR  breast  cancer  inosine  microRNA  microRNA targeting  RNA editing  computational model  explanatory model  hybrid model  mechanism  mechanistic model  modeling methods  provenance  workflow  systems modeling  simulation  bioreactor integrated modeling  CFD simulation  compartmental modeling  reducedorder model  bioreactor operation optimization  ordinary differential equation  SREBP2  nonlinear dynamics  multiple time scales  geometric singular perturbation theory  bifurcation analysis  canardinduced EADs  calcium current  multiscale systems biology  computational biology  quantitative systems pharmacology (QSP)  immunooncology  immunotherapy  immune checkpoint inhibitor  mathematical modeling  gut microbiota dysbiosis  Clostridium difficile infection  bacterial biofilms  metabolic modeling  parameter optimization  differential evolution  evolutionary algorithm  bistable switch  oscillator  turning point bifurcation  Hopf bifurcation  biological networks  massaction networks  BioModels Database  n/a
Choose an application
This book contains various works presented at the Dynamics Days Latin America and the Caribbean (DDays LAC) 2018. Since its beginnings, a key goal of the DDays LAC has been to promote crossfertilization of ideas from different areas within nonlinear dynamics. On this occasion, the contributions range from experimental to theoretical research, including (but not limited to) chaos, control theory, synchronization, statistical physics, stochastic processes, complex systems and networks, nonlinear timeseries analysis, computational methods, fluid dynamics, nonlinear waves, pattern formation, population dynamics, ecological modeling, neural dynamics, and systems biology. The interested reader will find this book to be a useful reference in identifying groundbreaking problems in Physics, Mathematics, Engineering, and Interdisciplinary Sciences, with innovative models and methods that provide insightful solutions. This book is a mustread for anyone looking for new developments of Applied Mathematics and Physics in connection with complex systems, synchronization, neural dynamics, fluid dynamics, ecological networks, and epidemics.
local field potential  mean field models  coupled oscillators  theta neuron  synchrony  out of equilibrium system  neural network  synchronization  nonlinear dynamics  Markov processes  computational methods  epidemic models  complex systems  nonlinear dynamics  neural network  synchronization  suppression of synchronization  temporal aliasing effect  ecological methods  sampling rates  cyclic dynamics  predator–prey system  population biology  recurrence time  Slater’s theorem  Lyapunov exponent  point scatterer  annular billiard  reaction fronts  convection  diffusive instabilities  calcium signals  IP3Rs dsitribution  puffs  waves  stochastic processes  complex systems  selforganization  Dicke model  birthday problem  nonlinear dynamics  delay bifurcation  population dynamics
Choose an application
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the stateoftheart in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a bruteforce calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
wake  bluff body  square cylinder  DDES  URANS  turbulence model  large eddy simulation  Taylor–Green vortex  numerical dissipation  modified equation analysis  truncation error  MUSCL  dynamic Smagorinsky subgridscale model  kinetic energy dissipation  computational fluid dynamics (CFD)  microfluidics  numerical methods  gasdynamics  shockchannel  microelectromechanical systems (MEMS)  discontinuous Galerkin finite element method (DG–FEM)  fluid mechanics  characteristicsbased scheme  multidirectional  Riemann solver  Godunov method  bifurcation  wind tunnel  neural networks  modeling  unsteady aerodynamic characteristics  high angles of attack  hypersonic  wake  chemistry  slenderbody  angle of attack  detection  afterbody  Sduct diffuser  flow distortion  flow control  vortex generators  aeroelasticity  reducedorder model  flutter  wind gust responses  computational fluid dynamics  convolution integral  sharpedge gust  reduced order aerodynamic model  geometry  meshing  aerodynamics  CPACS  MDO  VLM  Euler  CFD  variable fidelity  multifidelity  aerodynamic performance  formation  VLM  RANS  hybrid reducedorder model  quasianalytical  aeroelasticity  flexible wings  subsonic  wing–propeller aerodynamic interaction  pfactor  installed propeller  overset grid approach
Choose an application
There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new nonperturbative theory, such as statistical description. Furthermore, multiscale interactions are responsible for inevitably complex dynamics in strongly nonequilibrium systems, a proper understanding of which remains a main challenge in classical physics. As a remarkable consequence of multiscale interaction, a quasiequilibrium state (the socalled selforganisation) can however be maintained. This special issue aims to present different theories of statistical mechanics to understand this challenging multiscale problem in turbulence. The 14 contributions to this Special issue focus on the various aspects of intermittency, coherent structures, selforganisation, bifurcation and nonlocality. Given the ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids (channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow around a highspeed train, solar wind and industrial application.
pipe flow boundary layer  turbulent transition  large eddy simulation  channel flow  kinetic theory  fluid dynamics  turbulence  selforganisation  shear flows  coherent structures  turbulence  stochastic processes  Langevin equation  FokkerPlanck equation  information length  trailingedge flap  control strategy  floating wind turbine  turbulence  free vortex wake  nonlocal theory  Lévy noise  Tsallis entropy  fractional Fokker–Plank equation  anomalous diffusion  hybrid (U)RANSLES  IDDES methodology  attached and separated flows  complex dynamics  microcavity laser  spatiotemporal chaos  turbulent boundary layer  low speed streaks  magnetic confinement fusion  turbulence  heat transport  Tjunction  denoise  coherent structure  continuous wavelet transform  solar wind  scaling properties  fractals  chaos  turbulence  intermittency  multifractal  thermodynamics  drop breakage  drop coalescence  local intermittency  turbulent flow  population balance equation  high efficiency impeller  Rushton turbine  energy cascade  bifurcations  Lyapunov theory  turbulence  statistical mechanics  intermittency  coherent structure  multiscale problem  selforganisation  bifurcation  nonlocality  scaling  multifractal
Choose an application
In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: selfexcited attractors and hidden attractors. The localization of selfexcited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with nonhyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phaselocked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with selfexcited attractors and hidden attractors.
new chaotic system  multiple attractors  electronic circuit realization  SBox algorithm  chaotic systems  circuit design  parameter estimation  optimization methods  Gaussian mixture model  chaotic system  empirical mode decomposition  permutation entropy  image encryption  hidden attractors  fixed point  stability  nonlinear transport equation  stochastic (strong) entropy solution  uniqueness  existence  multiscale multivariate entropy  multistability  selfreproducing system  chaos  hidden attractor  selfexcited attractor  fractional order  spectral entropy  coexistence  multistability  chaotic flow  hidden attractor  multistable  entropy  core entropy  Thurston’s algorithm  Hubbard tree  external rays  chaos  Lyapunov exponents  multiplevalued  static memory  strange attractors  fractional discrete chaos  entropy  projective synchronization  full state hybrid projective synchronization  generalized synchronization  inverse full state hybrid projective synchronization  inverse generalized synchronization  multichannel supply chain  service game  chaos  entropy  BOPS  Hopf bifurcation  selfexcited attractors  multistability  sample entropy  PRNG  Nonequilibrium fourdimensional chaotic system  entropy measure  adaptive approximatorbased control  neural network  uncertain dynamics  synchronization  fractionalorder  complexvariable chaotic system  unknown complex parameters  chaotic map  fixed point  chaos  approximate entropy  implementation  hidden attractor  hyperchaotic system  multistability  entropy analysis  hidden attractor  complex systems  fractionalorder  entropy  chaotic maps  chaos  spatial dynamics  Bogdanov Map  chaos  laser  resonator
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Listing 1  8 of 8 
Sort by

2019 (8)