Search results: Found 4

Listing 1 - 4 of 4
Sort by
Yeast Biotechnology 2.0

Author:
ISBN: 9783038974314 / 9783038974321 Year: Pages: 216 DOI: 10.3390/books978-3-03897-432-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Biology
Added to DOAB on : 2019-01-10 10:41:31
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by humans. Saccharomyces is a top-choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue “Yeast Biotechnology 2.0” is a continuation of the first Special Issue, “Yeast Biotechnology” (https://www.mdpi.com/books/pdfview/book/324). It compiles the current state-of-the-art of research and technology in the area of “yeast biotechnology” and highlights prominent current research directions in the fields of yeast synthetic biology and strain engineering, new developments in efficient biomolecule production, fermented beverages (beer, wine, and honey fermentation), and yeast nanobiotechnology.]

Yeast Biotechnology

Author:
ISBN: 9783038424437 9783038424420 Year: Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-06-28 09:30:16
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue is focused on some recent developments of yeast biotechnology, i.e., bioethanol, wine and beer, and enzyme production. Additionally, the new field of yeast nanobiotechnology is introduced and reviewed.

Biofuels and Biochemicals Production

Author:
ISBN: 9783038425540 9783038425557 Year: Pages: 196 DOI: 10.3390/books978-3-03842-555-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-01-10 12:39:10
License:

Loading...
Export citation

Choose an application

Abstract

The high demand and depletion of petroleum reserves and the associated impact on the environment, together with volatility in the energy market price over the past three decades, have led to tremendous efforts in bio-based research activities, especially in biofuels and biochemicals. Most people associate petroleum with gasoline, however, approximately 6000 petroleum-derived products are available on the market today. Ironically, these petroleum-derived products have not elicited a high level of interest among the populace and media due, in part, to little awareness of the origins of these important products. Given the finite nature of petroleum, it is critical to devote substantial amounts of energy and resources on the development of renewable chemicals, as is currently done for fuels. Theoretically, the bioproduction of gasoline-like fuels and the 6000 petroleum-derived products are within the realm of possibility since our aquatic and terrestrial ecosystems contain abundant and diverse microorganisms capable of catalyzing unlimited numbers of reactions. Moreover, the fields of synthetic biology and metabolic engineering have evolved to the point that a wide range of microorganisms can be enticed or manipulated to catalyze foreign, or improve indigenous, biosynthetic reactions. To increase the concentration of products of interest and to ensure consistent productivity and yield, compatible fermentation processes must be used. Greater agricultural and chemical production during the past three decades, due in part to population increase and industrialization, has generated increasing levels of waste, which must be treated prior to discharge into waterways or wastewater treatment plants. Thus, in addition to the need to understand the physiology and metabolism of microbial catalysts of biotechnological significance, development of cost-effective fermentation strategies to produce biofuels and chemicals of interests while generating minimal waste, or better yet, converting waste into value-added products, is crucial. In this Special Issue, we invite authors to submit original research and review articles that increase our understanding of fermentation technology vis-à-vis production of liquid biofuels and biochemicals, and fermentation strategies that alleviate product toxicity to the fermenting microorganism while enhancing productivity. Further, original research articles and reviews focused on anaerobic digestion, production of gaseous biofuels, fermentation optimization using modelling and simulations, metabolic engineering, or development of tailor-made fermentation processes are welcome.

Biofuel and Bioenergy Technology

Authors: --- ---
ISBN: 9783038975960 Year: Pages: 425 DOI: 10.3390/books978-3-03897-597-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this book is ""Biofuel and Bioenergy Technology"". It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biorefinery for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and bioenergy technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohol-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Keywords

air-steam gasification --- equilibrium model --- tar --- energy exchange --- exergy efficiency --- bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) --- wastewater --- photo catalyst --- degradation --- calcination --- chemical oxygen demand (COD) --- MFC --- hydrodynamic boundary layer --- recirculation mode --- shear rate --- voltage --- charge transfer resistance --- biodiesel --- direct transesterification --- Rhodotorula glutinis --- single cell oil --- biogas --- tri-reforming process --- syngas --- methane and carbon dioxide conversion --- hydrogen/carbon monoxide ratio --- first-law/second-law efficiency --- biodiesel --- esterification --- liquid lipase --- superabsorbent polymer --- response surface methodology --- waste wood --- torrefaction --- energy yield --- mass yield --- CHO index --- gross calorific value --- Van Krevelen diagram --- anaerobic digestion --- biogas production --- wastewater treatment --- membrane bioreactors --- anaerobic digestion --- methane --- carbon dioxide --- small-scale biogas plants --- developing countries --- SOFC --- validation --- simulation --- exergy --- syngas --- Chlorella --- coal-fired flue-gas --- screening --- biodiesel property --- mixotrophic cultivation --- thermophilic anaerobic digestion --- corn stover --- prairie cord grass --- unbleached paper --- digester performance --- process stability --- synergistic effects --- microbial community --- Methanothermobacter --- biochemical methane potential --- redox potential reduction --- direct interspecies electron transfer --- electroactive biofilm --- Nejayote --- granular activated carbon --- Jerusalem artichoke --- lignocellulose --- acid pretreatment --- nitric acid --- alkali pretreatment --- enzymatic hydrolysis --- ethanol fermentation --- waste biomass --- Vietnam --- solid biofuel --- calorific value --- mechanical durability --- fatty acid methyl ester --- catalyst --- viscosity --- iodine value --- acidity index --- sewage sludge --- pyrolytic oil --- Taguchi method --- thermogravimetric analysis --- synergistic effect --- combined pretreatment --- ball mill --- ethanol organosolv --- herbaceous biomass --- lignin recovery --- Annona muricata --- biodiesel production --- seed oil --- soursop --- two-step process --- response surface methodology --- RSM --- second-generation biodiesel --- stone fruit --- optimisation --- biodiesel testing --- transesterification --- lignocellulosic biomass --- Miscanthus --- mechanical pretreatment --- organosolv pretreatment --- microbial biofuel --- metabolic engineering --- alkanes --- alcohols --- acetone --- electrochemical hydrogenation --- isopropanol --- membrane contamination --- polymer electrolyte membrane --- relative humidity --- diesel --- Carica papaya --- engine performance --- biodiesel --- characterisation --- porosity --- thermophoretic force --- biomass fuel --- non-premixed combustion --- counter-flow structure --- mathematical modeling --- emulsification --- liquefaction --- bio-oils --- co-surfactant --- surfactant --- diesel --- biogas --- Clostridiales --- hydrogen-producing bacteria --- bioreactors --- anaerobic fermentation --- anaerobic digestion --- microbial community composition

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

english (3)

eng (1)


Year
From To Submit

2019 (2)

2017 (2)