Search results: Found 3

Listing 1 - 3 of 3
Sort by
How Can Development and Plasticity Contribute to Understanding Evolution of the Human Brain?

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198894 Year: Pages: 130 DOI: 10.3389/978-2-88919-889-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Humans usually attribute themselves the prerogative of being the pinnacle of evolution. They have large brains with many billion neurons and glial cells, trillions of synapses and besides all, a plastic hardware that may change either subtly or strongly in response to the external environment and internal, mental commands. With this hypercomplex apparatus, they are capable of very sophisticated inward computations and outward behaviors that include self-recognition, metacognition, different forms of language expression and reception, prediction of future events, planning and performing long streams of motor acts, subtle emotional feelings, and many other surprising, almost unbelievable properties. The main challenge for research is: how do we explain this gigantic achievement of evolution? Is it a direct consequence of having acquired a brain larger than our primate ancestors, with huge numbers of computational units? Would it be determined by a particular way these units came to relate to each other, building up logic circuits of powerful capacities? What along development has “made the difference” for the construction of such a complex brain machine? How much of this complexity is innate, how much is sculpted by influence of the external world, by social interaction with our human fellows, and by the history of our own mental trajectory along life? Many specific questions can be asked (albeit not necessarily answered so far) to this purpose: (1) which genomic characteristics make us unique among primates? (2) which of developmental events during and beyond embryogenesis define our brain – prolonged neurogenesis? permanent circuit (re)formation? dynamic synaptogenesis? regressive sculpting of the hardware? all of them? (3) is there anything special about plasticity of the human brain that allows us to build the exquisite individual variability characteristic of our brains? Neuroscience is in need of a synthesis. Perhaps associating concepts derived from developmental neurobiology with evolutionary morphology and physiology, together with those that photograph the human brain in action under influence of the external world, would turn on a light at the end of the tunnel, and we would be able to understand what humans do have that is special – if anything – to explain our success in the Earth.

Adaptive Function and Brain Evolution

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193066 Year: Pages: 266 DOI: 10.3389/978-2-88919-306-6 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

The brain of each animal shows specific traits that reflect its phylogenetic history and its particular lifestyle. Therefore, comparing brains is not just a mere intellectual exercise, but it helps understanding how the brain allows adaptive behavioural strategies to face an ever-changing world and how this complex organ has evolved during phylogeny, giving rise to complex mental processes in humans and other animals. These questions attracted scientists since the times of Santiago Ramon y Cajal one of the founders of comparative neurobiology. In the last decade, this discipline has undergone a true revolution due to the analysis of expression patterns of morphogenetic genes in embryos of different animals. The papers of this e-book are good examples of modern comparative neurobiology, which mainly focuses on the following four Grand Questions: a) How are different brains built during ontogeny?b) What is the anatomical organization of mature brains and how can they be compared?c) How do brains work to accomplish their function of ensuring survival and, ultimately, reproductive success?d) How have brains evolved during phylogeny? The title of this e-book, Adaptive Function and Brain Evolution, stresses the importance of comparative studies to understand brain function and, the reverse, of considering brain function to properly understand brain evolution. These issues should be taken into account when using animals in the research of mental function and dysfunction, and are fundamental to understand the origins of the human mind.

Adult neurogenesis twenty years later: physiological function versus brain repair

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194940 Year: Pages: 120 DOI: 10.3389/978-2-88919-494-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

The discovery that mammalian brains contain neural stem cells which perform adult neurogenesis - the production and integration of new neurons into mature neural circuits - has provided a fully new vision of neural plasticity. On a theoretical basis, this achievement opened new perspectives for therapeutic approaches in restorative and regenerative neurology. Nevertheless, in spite of striking advancement concerning the molecular and cellular mechanisms which allow and regulate the neurogenic process, its exploitation in mammals for brain repair strategies remains unsolved. In non-mammalian vertebrates, adult neurogenesis also contributes to brain repair/regeneration. In mammals, neural stem cells do respond to pathological conditions in the so called "reactive neurogenesis", yet without substantial regenerative outcome. Why, even in the presence of stem cells in the brain, we lack an effective reparative outcome in terms of regenerative neurology, and which factors hamper the attainment of this goal? Essentially, what remains unanswered is the question whether (and how) physiological functions of adult neurogenesis in mammals can be exploited for brain repair purposes.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (3)


License

CC by (3)


Language

english (3)


Year
From To Submit

2016 (1)

2015 (1)

2014 (1)