Search results: Found 9

Listing 1 - 9 of 9
Sort by
Magnetic Resonance Imaging on Patients with Implanted Cardiac Pacemakers

Author:
Book Series: Karlsruhe transactions on biomedical engineering / Ed.: Universität Karlsruhe (TH) / Institute of Biomedical Engineering ISSN: 18645933 ISBN: 9783866446106 Year: Volume: 10 Pages: 156 p. DOI: 10.5445/KSP/1000021187 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this work was to identify the patterns that can induce heating around implanted cardiac pacemakers during MRI and to develop strategies to counteract them. Two approaches were taken: computer simulations of the occurring electromagnetic field distributions and in-vitro experiments using phantoms in real MRI devices, both for conventional bore-hole and new open MRI systems. Using the open MRI, the observed heating could be reduced significantly.

Multiscale Modeling of the Ventricles: From Cellular Electrophysiology to Body Surface Electrocardiograms

Author:
Book Series: Karlsruhe transactions on biomedical engineering / Ed.: Karlsruhe Institute of Technology / Institute of Biomedical Engineering ISSN: 18645933 ISBN: 9783866447141 Year: Volume: 13 Pages: XIII, 248 p. DOI: 10.5445/KSP/1000023886 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

This work is focused on different aspects within the loop of multiscale modeling:On the cellular level, effects of adrenergic regulation and the Long-QT syndrome have been investigated.On the organ level, a model for the excitation conduction system was developed and the role of electrophysiological heterogeneities was analyzed.On the torso level a dynamic model of a deforming heart was created and the effects of tissue conductivities on the solution of the forward problem were evaluated.

Simulation von Fahrspielen und Energieflüssen in Nahverkehrssystemen

Author:
Book Series: Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik ISSN: 18696058 ISBN: 9783731507406 Year: Volume: 66 Pages: XXX, 323 p. DOI: 10.5445/KSP/1000077162 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

For ecological und economic reasons, special attention is paid to the energy balance of rail-bound, local, direct current-based transport systems. With the tram and urban railway network of Karlsruhe being used as an example, 16 simulation scenarios with different measures for energy optimization are analysed in a coupled computation of driving cycles and energy flows.

Advanced Treatment of Fission Yield Effects and Method Development for Improved Reactor Depletion Calculations

Author:
ISBN: 9783731508434 Year: Pages: XVI, 226 p. DOI: 10.5445/KSP/1000085625 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Fission product yield data play an important role in simulations of nuclear fission reactors, aimed at fuel cycle and safety analyses. The respective evaluated data libraries still have shortcomings regarding the treatment of energy dependencies and uncertainty information. This work has been aimed at the development of a fission model for future fission product yield evaluations as well as its validation on the levels of cross-sections, fission product yields and time dependent decay radiation.

Electromagnetic Technologies for Medical Diagnostics. Fundamental Issues, Clinical Applications and Perspectives

Authors: ---
ISBN: 9783038976769 Year: Pages: 240 DOI: 10.3390/books978-3-03897-677-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.

Recent Advances in Novel Materials for Future Spintronics

Authors: --- ---
ISBN: 9783038979760 / 9783038979777 Year: Pages: 152 DOI: 10.3390/books978-3-03897-977-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.

Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 / 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Control and Nonlinear Dynamics on Energy Conversion Systems

Authors: ---
ISBN: 9783039211104 / 9783039211111 Year: Pages: 438 DOI: 10.3390/books978-3-03921-111-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Keywords

data-driven --- prediction --- neural network --- air-handling unit (AHU) --- supply air temperature --- pulverizing system --- soft sensor --- inferential control --- moving horizon estimation --- multi-model predictive control --- micro-grid --- droop control --- virtual impedance --- harmonic suppression --- power quality --- combined heat and power unit --- two-stage bypass --- dynamic model --- coordinated control system --- predictive control --- decoupling control --- power conversion --- model–plant mismatches --- disturbance observer --- performance recovery --- offset-free --- electrical machine --- electromagnetic vibration --- multiphysics --- rotor dynamics --- air gap eccentricity --- calculation method --- magnetic saturation --- corrugated pipe --- whistling noise --- Helmholtz number --- excited modes --- switched reluctance generator --- capacitance current pulse train control --- voltage ripple --- capacitance current --- feedback coefficient --- distributed architecture --- maximum power point tracking --- sliding mode control --- overvoltage --- permanent magnet synchronous motor (PMSM) --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- single artificial neuron (SAN) --- reinforcement learning (RL) --- goal representation heuristic dynamic programming (GrHDP) --- adaptive dynamic programming (ADP) --- sliding mode observer (SMO) --- permanent magnet synchronous motor (PMSM) --- extended back electromotive force (EEMF) --- position sensorless --- bridgeless converter --- discontinuous conduction mode (DCM) --- high step-up voltage gain --- power factor correction (PFC) --- space mechanism --- multi-clearance --- nonlinear dynamic model --- planetary gears --- vibration characteristics --- new step-up converter --- ultrahigh voltage conversion ratio --- small-signal model --- average-current mode control --- slope compensation --- monodromy matrix --- current mode control --- boost-flyback converter --- explosion-magnetic generator --- plasma accelerator --- current-pulse formation --- DC-DC buck converter --- contraction analysis --- global stability --- matrix norm --- DC micro grid --- efficiency optimization --- variable bus voltage MG --- variable switching frequency DC-DC converters --- centralized vs. decentralized control --- local vs. global optimization --- buck converter --- DC motor --- bifurcations in control parameter --- sliding control --- zero average dynamics --- fixed-point inducting control --- DC-DC converters --- quadratic boost --- maximum power point tracking (MPPT) --- nonlinear dynamics --- subharmonic oscillations --- photovoltaic (PV) --- steel catenary riser --- rigid body rotation --- wave --- the load of suspension point in the z direction --- Cable3D

Listing 1 - 9 of 9
Sort by
Narrow your search