Search results: Found 3

Listing 1 - 3 of 3
Sort by
B-Vitamins and One-Carbon Metabolism

Author:
ISBN: 9783038429739 9783038429746 Year: Pages: XII, 390 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-06-26 13:22:55
License:

Loading...
Export citation

Choose an application

Abstract

Folate, vitamin B12, vitamin B6 and riboflavin play a key role as coenzymes in one-carbon metabolism which, in turn, is essential for a broad range of fundamental physiological processes, including RNA and DNA synthesis, cell division, tissue growth and methylation. Deficiencies or imbalance of B-vitamins, as well as genetic polymorphisms and environmental factors, are shown to disturb the normal function of one-carbon metabolism with adverse effects on human health. Although a vast volume of research has already been conducted in this area, there are still significant gaps in our knowledge that require further investigations. This Special Issue of Nutrients invited submission of manuscripts, original research or reviews of the scientific literature, focused on novel findings in relation to B-vitamins and one-carbon metabolism in terms of: metabolic roles and molecular mechanisms; gene–nutrient interactions; fetal growth and programing; risk of disease (birth defects and pregnancy related conditions, cancer, cardiovascular disease and hypertension, neuropsychiatric disease, osteoporosis); health effects of B-vitamin supplementation and food fortification.

Mass Spectrometric Proteomics

Author:
ISBN: 9783038978268 9783038978275 Year: Pages: 192 DOI: 10.3390/books978-3-03897-827-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

As suggested by the title of this Special Issue, liquid chromatography-mass spectrometry plays a pivotal role in the field of proteomics. Indeed, the research and review articles  published in the Issue clearly evidence how the data produced by this sophisticated methodology may promote impressive advancements in this area. From among the topics discussed in the Issue, a few point to the development of  new procedures for the  optimization of the experimental conditions that should be applied  for the identification of proteins present in complex mixtures.  Other applications  described in these articles show  the huge potential of  these strategies in the protein profiling of organs and  range from  to the study of post-translational tissue modifications to the investigation of the molecular mechanisms behind human disorders and the identification of potential biomarkers of these diseases.

Plant Proteomic Research 2.0

Author:
ISBN: 9783039210626 / 9783039210633 Year: Pages: 594 DOI: 10.3390/books978-3-03921-063-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

Phalaenopsis --- petal --- pollination --- senescence --- 2-DE --- ROS --- Medicago sativa --- leaf cell wall proteome --- cadmium --- quantitative proteomics --- 2D DIGE --- chloroplast --- elevated CO2 --- heat stress --- nucleotide pyrophosphatase/phosphodiesterase --- (phospho)-proteomics --- photosynthesis --- protein phosphorylation --- 14-3-3 proteins --- Oryza sativa L. --- starch --- sucrose --- N utilization efficiency --- proteomics --- 2D --- protein phosphatase --- rice isogenic line --- SnRK1 --- 14-3-3 --- lettuce --- bolting --- proteome --- high temperature --- iTRAQ --- proteome profiling --- iTRAQ --- differentially abundant proteins (DAPs) --- drought stress --- physiological responses --- Zea mays L. --- GS3 --- ? subunit --- heterotrimeric G protein --- mass spectrometric analysis --- RGG3 --- rice --- western blotting --- Dn1-1 --- ?-subunit --- heterotrimeric G protein --- mass spectrometry analysis --- RGG4 --- rice --- western blotting --- Clematis terniflora DC. --- polyphenol oxidase --- virus induced gene silencing --- photosynthesis --- glycolysis --- Camellia sinensis --- chlorotic mutation --- chlorophyll deficiency --- weakening of carbon metabolism --- iTRAQ --- proteomics --- degradome --- wheat --- cultivar --- protease --- papain-like cysteine protease (PLCP) --- subtilase --- metacaspase --- caspase-like --- wheat leaf rust --- Puccinia recondita --- Stagonospora nodorum --- iTRAQ --- proteomics --- somatic embryogenesis --- pyruvate biosynthesis --- Zea mays --- chlorophylls --- LC-MS-based proteomics --- pea (Pisum sativum L.) --- proteome functional annotation --- proteome map --- seeds --- seed proteomics --- late blight disease --- potato proteomics --- Phytophthora infestans --- Sarpo Mira --- early and late disease stages --- Simmondsia chinensis --- cold stress --- proteomics --- leaf --- iTRAQ --- Ricinus communis L. --- cold stress --- seed imbibition --- iTRAQ --- proteomics --- Morus --- organ --- gel-free/label-free proteomics --- flavonoid --- antioxidant activity --- phosphoproteome --- barley --- seed dormancy --- germination --- imbibition --- after-ripening --- sugarcane --- Sporisorium scitamineum --- smut --- proteomics --- RT-qPCR --- ISR --- holm oak --- Quercus ilex --- 2-DE proteomics --- shotgun proteomics --- non-orthodox seed --- population variability --- stresses responses --- ammonium --- Arabidopsis thaliana --- carbon metabolism --- nitrogen metabolism --- nitrate --- proteomics --- root --- secondary metabolism --- proteomics --- wheat --- silver nanoparticles --- plant pathogenesis responses --- data-independent acquisition --- quantitative proteomics --- Pseudomonas syringae --- sweet potato plants infected by SPFMV --- SPV2 and SPVG --- sweet potato plants non-infected by SPFMV --- SPV2 and SPVG --- co-infection --- transcriptome profiling --- gene ontology --- pathway analysis --- lesion mimic mutant --- leaf spot --- phenylpropanoid biosynthesis --- proteomics --- isobaric tags for relative and absolute quantitation (iTRAQ) --- rice --- affinity chromatography --- ergosterol --- fungal perception --- innate immunity --- pattern recognition receptors --- plasma membrane --- proteomics --- proteomics --- maize --- plant-derived smoke --- shoot --- Solanum tuberosum --- patatin --- seed storage proteins --- vegetative storage proteins --- tuber phosphoproteome --- targeted two-dimensional electrophoresis --- B. acuminata petals --- MALDI-TOF/TOF --- GC-TOF-MS --- qRT-PCR --- differential proteins --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

eng (2)

english (1)


Year
From To Submit

2019 (2)

2018 (1)