Search results: Found 11

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
On the diverse bonding situations in nanostructures : an ab initio computational study

Author:
ISBN: 9783866444508 Year: Pages: VIII, 131 p. DOI: 10.5445/KSP/1000013975 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Chemistry (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This computational study investigates diverse bonding situations in nanostructures (carbon nanotubes, fullerenes, metal compounds) spanning a broad range of energies. Weak, dispersive interactions and covalent metal-ligand and metal-metal bonding are examined. The results of efficient density functional calculations are compared to those of correlated wavefunction calculations on model systems. This rigorous validation is crucial in evaluating the balance between computational cost and accuracy.

STM Characterization of Phenylene-Ethynylene Oligomers on Au(111) and their Integration into Carbon Nanotube Nanogaps

Author:
Book Series: Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut ISSN: 21919925 ISBN: 9783731502357 Year: Volume: 12 Pages: 125 p. DOI: 10.5445/KSP/1000041811 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

Molecular electronics requires both profound knowledge of a molecule's structure and functionality on a surface and controlled positioning between electrodes with nanometer-sized gaps. In the first part of this work, a detailed scanning tunneling microscope study of two variants of oligo(phenylene ethynylene) molecules is presented. In the second part, methods of fabricating carbon nanotube nanogap electrodes as direct contacts to these molecules are explored.

Multi-Walled Carbon Nanotubes

Author:
ISBN: 9783039212293 / 9783039212309 Year: Pages: 184 DOI: 10.3390/books978-3-03921-230-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.

Keywords

water based nanofluid --- carbon-nanotubes --- boundary layer --- heat generation --- thermal radiation --- curved stretching sheet --- numerical solution --- Single-Walled Carbon Nanotube (SWCNT) --- Multi-Walled Carbon Nanotube (MWCNT) --- MHD --- Casson model --- stretching sheet --- non-linear thermal radiation --- HAM --- zeolitic imidazolate framework --- multi-walled carbon nanotubes --- magnetic solid phase extraction --- organochlorine pesticides --- agricultural irrigation water --- Pd-CNT nanohybrids --- functionalized CNTs --- polarity --- semi-homogeneous catalysis --- heck reaction --- nanomaterials --- multi-walled carbon nanotubes --- synthesis methods --- electrochemical properties --- electrochemical sensors --- electroanalysis --- sensing applications --- multiwalled carbon nanotubes --- gold(I) --- gold(III) --- adsorption --- elution --- gold nanoparticles --- adsorption --- multi-walled carbon nanotubes --- nonylphenol --- kinetics --- multi-walled carbon nanotubes --- graphene oxide --- cerium oxide --- lubricating oil additives --- multi-wall carbon nanotube (MWCNT) --- azide-alkyne click chemistry --- RAFT polymerization --- PMMA --- carbon nanotubes --- composites --- radar absorbing materials --- complex permittivity --- chloride diffusion --- cement mortars --- carbon nanotubes --- mechanical properties --- electrical properties --- hydrophobic drugs --- drug delivery --- functionalized carbon nanotubes --- dissolution rate --- nanomedicine --- polymeric composites --- silicone rubber --- Ionic liquid --- carbon materials --- structural --- EMI shielding --- n/a

Carbonates

Author:
ISBN: 9783038977223 Year: Pages: 146 DOI: 10.3390/books978-3-03897-723-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue is aimed at presenting the state of the art of the multidisciplinary science concerning all aspects of volcanic plumes, of relevance to the volcanology, climatology, atmospheric science, and remote sensing communities.

Solid Catalysts for the Upgrading of Renewable Sources

Authors: ---
ISBN: 9783038975724 Year: Pages: 226 DOI: 10.3390/books978-3-03897-573-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- Science (General)
Added to DOAB on : 2019-04-05 11:07:22
License:

Loading...
Export citation

Choose an application

Abstract

The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies.

Food Packaging. Materials and Technologies

Authors: ---
ISBN: 9783038977667 9783038977674 Year: Pages: 216 DOI: 10.3390/books978-3-03897-767-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Because of the increasing pressure on both food safety and packaging/food waste, the topic is important both for academics, applied research, industry and also for environment protection. Different materials, such as glass, metals, paper and paperboards, and non-degradable and degradable polymers, with versatile properties, are attractive for potential uses in food packaging. Food packaging is the largest area of application within the food sector. Only the nanotechnology-enabled products in the food sector account for ~50% of the market value, with and the annual growth rate is 11.65%. Technological developments are also of great interest. In the food sector, nanotechnology is involved in packaging materials with extremely high gas barriers, antimicrobial properties, and also in nanoencapsulants for the delivery of nutrients, flavors, or aromas, antimicrobial, and antioxidant compounds. Applications of materials, including nanomaterials in packaging and food safety, are in forms of: edible films, polymer nanocomposites, as high barrier packaging materials, nanocoatings, surface biocides, silver nanoparticles as potent antimicrobial agents, nutrition and neutraceuticals, active/bioactive packaging, intelligent packaging, nanosensors and nanomaterial-based assays for the detection of food relevant analytes (gasses, small organic molecules and food-borne pathogens) and bioplastics.

ECO-COMPASS

Authors: ---
ISBN: 9783038976905 / 9783038976912 Year: Pages: 219 DOI: 10.3390/books978-3-03897-691-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Media and communication --- Transportation
Added to DOAB on : 2019-08-28 11:21:28
License:

Loading...
Export citation

Choose an application

Abstract

Today, mainly man-made materials, such as carbon and glass fibers, are used to produce composite parts in aviation. Renewable materials, such as natural fibers or bio-sourced resin systems, have not yet found their way into aviation. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibers such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a Life Cycle Assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. This Special Issue provides selected papers from the project consortium partners.

Nanogenerators in Korea

Authors: ---
ISBN: 9783038976226 Year: Pages: 160 DOI: 10.3390/books978-3-03897-623-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Fossil fuels leaded the 21st century industrial revolution but caused some critical problems such as exhaustion of resources and global warming. Also, current power plants require too much high cost and long time for establishment and facilities to provide electricity. Thus, developing new power production systems with environmental friendliness and low-cost is critical global needs. There are some emerging energy harvesting technologies such as thermoelectric, piezoelectric, and triboelectric nanogenerators, which have great advantages on eco-friendly low-cost materials, simple fabrication, and various operating sources. Since the introduction of various energy harvesting technologies, many novel designs and applications as power suppliers and physical sensors in the world have been demonstrated based on their unique advantages. In this Special Issue, we would like to address and share basic approaches, new designs, and industrial applications related to thermoelectric, piezoelectric, and triboelectric devices which are on-going in Korea. With this Special Issue, we aim to promote fundamental understanding and to find novel ways to achieve industrial product manufacturing for energy harvesters.

Tribological Performance of Artificial Joints

Authors: ---
ISBN: 9783039210787 / 9783039210794 Year: Pages: 178 DOI: 10.3390/books978-3-03921-079-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Surgery
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Joint replacement is a very successful medical treatment. However, the survivorship of the implants could be adversely affected due to the loss of materials in the form of particles or ions as the bearing surfaces articulate against earch other. The consequent tissue and immune response to the wear products, remain one of the key factors of their failure. Tribology has been defined as the science and technology of interacting surfaces in relative motion and all related wear products (e.g., particles, ions, etc.). Over the last few decades, in an attempt to understand and improve joint replacement technology, the tribological performance of several material combinations have been studied experimentally and assessed clinically. In addition, research has focused on the biological effects and long term consequences of wear products. Improvements have been made in manufacturing processes, precision engineering capabilities, device designs and materials properties in order to minimize wear and friction and maximize component longevity in vivo.

Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 / 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Narrow your search