Search results: Found 3

Listing 1 - 3 of 3
Sort by
The truth in complexes: why unraveling ion channel multi-protein signaling nexuses is critical for understanding the function of the nervous system

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194452 Year: Pages: 160 DOI: 10.3389/978-2-88919-445-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

In the search for simple explanations of the natural world, its complicated textures are often filed down to a smoothened surface of our liking. The impetus for this Research Topic was borne out of a need to re-ignite interest in the complex – in this case in the context of ion channels in the nervous system. Ion channels are the large proteins that form regulated pores in the membranes of cells and, in the brain, are essential for the transfer, processing and storage of information. These pores full of twists and turns themselves are not just barren bridges into cells. More and more we are beginning to understand that ion channels are like bustling medieval bridges (packed with apartments and shops) rather than the more sleek modern variety – they are dynamic hubs connected with many structures facilitating associated activities. Our understanding of these networks continues to expand as our investigative tools advance. Together these articles highlight how the complexity of ion channel signaling nexuses is critical to the proper functioning of the nervous system.

The Biology and Treatment of Myeloid Leukaemias

Authors: ---
ISBN: 9783038427957 9783038427964 Year: Pages: VI, 190 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Oncology
Added to DOAB on : 2018-04-17 13:45:41
License:

Loading...
Export citation

Choose an application

Abstract

There has been an observed decrease in the global mortality from cancer, mostly atributable to improved, particularly early, detection and prevention. For many carcinomas and leukaemias in adults, once the disease has reached a certain stage there are no therapies that are able to erradicate the cancer cells and cure patients. There has been progress in the treatment of acute myeloid leukaemia (AML) and remissions are achievable; however, the presence of chemoresistent blast cells leads to most patients relapsing, and relapse is difficult to treat and thus patients die due to their disease. Targeting these resistent cells and the leukaemia stem cells, which sustain the leukaemia, is crucial for an effective therapy for AML. Moreover, an increasing number of diverse mutations have been described in AML cells that disrupt the ability of these cells to undergo differentiation. The use of pro-differentiating agents to drive the blast cells to mature, and subsequently undergo apoptosis, provides another approach to therapy. Differentiation therapy, using all-trans retinoic acid (ATRA), an inducer of granulocyte differentiation, has been highly successful in the case of acute promyeloicytic leukaemia, a sub-type of AML, turning this disease into a curable malignancy.

mTOR in Human Diseases

Author:
ISBN: 9783039210602 / 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search