Search results: Found 6

Listing 1 - 6 of 6
Sort by
Advancements in Biomass Recalcitrance: The Use of Lignin for the Production of Fuels and Chemicals

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889457069 Year: Pages: 103 DOI: 10.3389/978-2-88945-706-9 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Biotechnology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Lignocellulosic biomass has great potentials as an alternative feedstock for fuels and chemicals. For effective utilization of biomass, biomass recalcitrance, which is inherent resistance of plant cell walls to biological deconstruction, needs to be reduced. Among many factors in biomass, lignin is significantly related to biomass recalcitrance. Lignin, a complex aromatic polymer, is the largest non-carbohydrate component (15-40% dry weight) in most terrestrial plants. In nature, it provides a structural integrity, facilitates water and nutrient transport, and protects plants from microbial attack. From a different angle, lignin significantly contributes to biomass recalcitrance, so it is necessary to reduce and/or modify the lignin for effective conversion of biomass. Genetic modifications of the lignin biosynthetic pathway and lignin-targeting pretreatments have been developed to minimize the lignin-induced biomass recalcitrance. High carbon content of lignin also renders it an attractive feedstock for many applications. About 100,000 to 200,000 tons of lignin can be generated per year as a byproduct from cellulosic ethanol production, so valorization of these lignins could be one of keys for achieving economic biorefinery. However, investigations of lignin conversion have not been accomplished as the utilization of carbohydrates in biomass. Depolymerization of lignin is still challenging because of its broad distribution of bond strengths, recondensation of low-molecular species, and poor product selectivity. Diverse biological and thermochemical depolymerization methods have been investigated to overcome these barriers. In this Research Topic, recent advancements in biomass recalcitrance by effective utilization of lignin are introduced.

Chemicals in the Environment and Brain Development: Importance of Neuroendocrinological Approaches

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451722 Year: Pages: 153 DOI: 10.3389/978-2-88945-172-2 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General) --- Neurology --- Science (General)
Added to DOAB on : 2017-08-28 14:01:09
License:

Loading...
Export citation

Choose an application

Abstract

Mounting evidence shows that increasing numbers of children are being diagnosed with neurodevelopmental disorders, and it is clear that this increase cannot be explained by genetic background alone. A number of studies, including epidemiological studies, have found an association between in-utero and childhood exposure to certain chemicals, such as endocrine disruptors, psychoactive pharmaceuticals, volatile organic chemicals, persistent organic compounds and heavy metals, and children’s brain development. Yet, the mechanisms by which these chemicals impair brain development and function are not fully understood. In addition, little is known about how these chemicals enter and accumulate in the brain. Experimental approaches are essential to understand how those harmful chemicals enter children’s brain and pose discrete effects on specific brain sites. These approaches include the following: improvement of technologies for the detection and measurement of neuroendocrinological and behavioral changes in animal models: development of analytical methods for the identification and quantification of chemicals and their metabolites in the brain; development of in vitro cell line assays; and imaging technologies to illustrate cellular functions. In this research topic, we collected articles that provide state-of-the-art science and technologies that can help us identify environmental chemicals that influence brain development. We also included articles that lead to a better understanding of the actions and dynamics of these chemicals. The articles in this research topics supplied novel information about harmful endpoints of environmental chemicals. The reviews demonstrated the typical and novel interactions between environmental chemicals and the developing brain. We believe that these studies would lead to further understanding of neurodevelopmental disorders caused by environmental factors.

Synthetic biology applications in industrial microbiology

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193424 Year: Pages: 129 DOI: 10.3389/978-2-88919-342-4 Language: English
Publisher: Frontiers Media SA
Subject: Environmental Sciences --- Biotechnology --- General and Civil Engineering --- Microbiology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Exponentially increasing information on biological organisms coupled with increasing computational power in the past decade have broadened the perspective of fundamental biological research, bringing about considerable promise and unprecedented potential for practical applications in biotechnology. As one emergent discipline, synthetic biology aims to design and engineer novel biologically-based parts, devices, and systems, in addition to redesigning existing, natural biological systems. Although previously relegated to demonstration studies, more recent research in synthetic biology has focused on the rational engineering of industrial microorganisms with the potential to address many of society’s critical challenges. Within the realm of industrial microbiology, progress in the field of synthetic biology has enabled the development of, for example, new biosynthetic pathways for the production of renewable fuels and chemicals, programmable logic controls to regulate and optimize cell function, and robust microbes for the destruction of harmful environmental contaminants. Some of the exciting examples included producing anti-malarial drug, anti- cancer taxol precursor and various biofuel molecules in E. coli and yeast. In addition, these researches have also greatly enhanced our understanding of the cellular machinery and its regulation in some of the industry important microbes, laying an important foundation for further design and engineering of biological function for even greater application. For these reasons, we present here a collection of articles from the leading edge of the field of synthetic biology, with a specific focus on the development in industrial microorganisms. It is the intent of this collection to reach a wide audience whose interests and expertise spans from development of novel synthetic biology methodologies and theories (both experimental and computational) to practical applications seeking to address issues facing the world today.

La comunicazione del rischio chimico. Sperimentazione e valutazione nelle scuole di Roma

Authors: --- ---
Book Series: Il riccio e la volpe - Open Access ISBN: 9788891739612 Year: DOI: 10.26530/OAPEN_622170 Language: Italian
Publisher: FrancoAngeli Grant: ISPRA
Subject: Sociology --- Social Sciences
Added to DOAB on : 2017-01-13 11:01:28
License:

Loading...
Export citation

Choose an application

Abstract

The book contains the results of a research on the outcomes of a communication campaign of the risks related to exposure to chemicals. The initiative, aimed at students of 3rd, 4th and 5th high school classes of the City of Rome, explored the initial level of skills and knowledge on the chemical hazard, and then assessed the increase as a result of an information campaign conducted by experts of Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), in order to spread knowledge on the subject and form a group of aware young citizens.

Cyanobacteria: The Green E. coli

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198122 Year: Pages: 114 DOI: 10.3389/978-2-88919-812-2 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

As the world struggles to reduce its dependence on fossil fuels and curb greenhouse gas emissions, industrial biotechnology is also ‘going green.’ Escherichia coli has long been used as a model Gram-negative bacterium, not only for fundamental research, but also for industrial applications. Recently, however, cyanobacteria have emerged as candidate chassis for the production of commodity fuels and chemicals, utilizing CO2 and sunlight as the main nutrient requirements. In addition to their potential for reducing greenhouse gas emissions and lowering production costs, cyanobacteria have naturally efficient pathways for the production metabolites such as carotenoids, which are of importance in the nutraceutical industry. The unique metabolic and regulatory pathways present in cyanobacteria present new challenges for metabolic engineers and synthetic biologists. Moreover, their requirement for light and the dynamic regulatory mechanisms of the diurnal cycle further complicate the development and application of cyanobacteria for industrial applications. Consequently, significant advancements in cyanobacterial engineering and strain development are necessary for the development of a ‘green E. coli’. This Research Topic will focus on cyanobacteria as organisms of emerging industrial relevance, including research focused on the development of genetic tools for cyanobacteria, the investigation of new cyanobacterial strains, the construction of novel cyanobacterial strains via genetic engineering, the application of ‘omics’ tools to advance the understanding of engineered cyanobacteria, and the development of computational models for cyanobacterial strain development.

TRP Channels in Health and Disease

Author:
ISBN: 9783039210824 / 9783039210831 Year: Pages: 266 DOI: 10.3390/books978-3-03921-083-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.

Keywords

ion channel --- TRPC --- small molecules --- calcium --- chemical probes --- TRPV1 --- TRPV2 --- TRPV3 --- TRPV4 --- mucosal epithelium --- ulcerative colitis --- inflammatory bowel disease --- TRPM4 channel --- cardiovascular system --- physiology --- pathophysiology --- TRPC6 --- elementary immunology --- inflammation --- calcium --- sodium --- neutrophils --- lymphocytes --- endothelium --- platelets --- human medulla oblongata --- cuneate nucleus --- dorsal column nuclei --- TRPV1 --- calcitonin gene-related peptide --- substance P --- TRP channels --- calcium signaling --- salivary glands --- xerostomia --- radiation --- inflammation --- transient receptor potential channels --- TRPC3 pharmacology --- channel structure --- lipid mediators --- photochromic ligands --- transient receptor potential --- TRPC3 --- mGluR1 --- GABAB --- EPSC --- Purkinje cell --- cerebellum --- toxicology --- TRP channels --- organ toxicity --- chemicals --- pollutants --- chemosensor --- TRPM7 --- kinase --- inflammation --- lymphocytes --- calcium signalling --- SMAD --- TH17 --- hypersensitivity --- regulatory T cells --- thrombosis --- graft versus host disease --- 2D gel electrophoresis --- AP18 --- HEK293 --- HSP70 --- MALDI-TOF MS(/MS) --- nanoHPLC-ESI MS/MS --- proteomics --- sulfur mustard --- TRPA1 --- TRPC channels --- diacylglycerol --- TRPC4 --- TRPC5 --- NHERF --- TRP channel --- TRPY1 --- Saccharomyces cerevisiae --- calcium --- manganese --- oxidative stress --- ion channels --- overproduction --- production platform --- protein purification --- Saccharomyces cerevisiae --- sensors --- transient receptor potential (TRP) channels --- yeast --- adipose tissue --- bioavailable --- menthol --- topical --- TRPM8 --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search