Search results: Found 2

Listing 1 - 2 of 2
Sort by
Experiments on flux qubits with pi-shifters

Author:
Book Series: Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut ISSN: 21919925 ISBN: 9783866446441 Year: Volume: 1 Pages: XI, 110 p. DOI: 10.5445/KSP/1000022237 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

The results of the research re-ported in this work show that tunable gap flux qubits have a potential for building quantum registers. Cavities coupled to flux qubits can be used for in-formation storage and transfer between qubits. SFS π-shifters provide a simple approach to bias multi-qubit circuits. A possibility to change the qubit resonance frequency while preserving qubit coherence enables implementation of switchable coupling between qubits and cavities.

Symmetry in Quantum Optics Models

Author:
ISBN: 9783039218585 / 9783039218592 Year: Pages: 92 DOI: 10.3390/books978-3-03921-859-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

Prototypical quantum optics models, such as the Jaynes–Cummings, Rabi, Tavis–Cummings, and Dicke models, are commonly analyzed with diverse techniques, including analytical exact solutions, mean-field theory, exact diagonalization, and so on. Analysis of these systems strongly depends on their symmetries, ranging, e.g., from a U(1) group in the Jaynes–Cummings model to a Z2 symmetry in the full-fledged quantum Rabi model. In recent years, novel regimes of light–matter interactions, namely, the ultrastrong and deep-strong coupling regimes, have been attracting an increasing amount of interest. The quantum Rabi and Dicke models in these exotic regimes present new features, such as collapses and revivals of the population, bounces of photon-number wave packets, as well as the breakdown of the rotating-wave approximation. Symmetries also play an important role in these regimes and will additionally change depending on whether the few- or many-qubit systems considered have associated inhomogeneous or equal couplings to the bosonic mode. Moreover, there is a growing interest in proposing and carrying out quantum simulations of these models in quantum platforms such as trapped ions, superconducting circuits, and quantum photonics. In this Special Issue Reprint, we have gathered a series of articles related to symmetry in quantum optics models, including the quantum Rabi model and its symmetries, Floquet topological quantum states in optically driven semiconductors, the spin–boson model as a simulator of non-Markovian multiphoton Jaynes–Cummings models, parity-assisted generation of nonclassical states of light in circuit quantum electrodynamics, and quasiprobability distribution functions from fractional Fourier transforms.

Listing 1 - 2 of 2
Sort by
Narrow your search
-->