Search results: Found 3

Listing 1 - 3 of 3
Sort by
Eine neue Methodik zur modellbasierten Bestimmung dynamischer Betriebslasten im mechatronischen Fahrwerkentwicklungsprozess

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Informatik - Automatisierungstechnik, Universität Karlsruhe (TH) ISSN: 16145267 ISBN: 9783866444010 Year: Volume: 28 Pages: X, 178 p. DOI: 10.5445/KSP/1000012187 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

In der vorliegenden Arbeit wird eine neue Methodik beschrieben, die es erlaubt, Modelle mechatronischer Fahrwerkregelsysteme möglichst einfach und schnell in ein Gesamtfahrzeugmodell zum Zwecke einer Betriebslastanalyse zu integrieren. Dadurch stehen im Fahrzeugentwicklungsprozess sehr früh Lastdaten für die betriebsfeste Auslegung von Fahrzeugkomponenten zur Verfügung., was eine Verkürzung der Produktentwicklungszeit und eine Minimierung der Produktentwicklungskosten ermöglicht.

Komplexitätsadaption integrierter Gesamtfahrzeugsimulationen

Author:
Book Series: Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik ISSN: 18696058 ISBN: 9783731504146 Year: Volume: 40 Pages: XIV, 215 p. DOI: 10.5445/KSP/1000048183 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Following the research principle of economy the simplest and most suitable simulation model should be preferred over more complex ones. This allows a high goodness of fit to existing measuring data with a high generalizability during the simulation of virtual prototypes. In addition, testing effort and simulation time can be reduced. For this reason quantification attributes are researched in this book, granting an optimal simulation model complexity depending on different simulation purposes.

Methods and Concepts for Designing and Validating Smart Grid Systems

Authors: --- ---
ISBN: 9783039216482 9783039216499 Year: Pages: 408 DOI: 10.3390/books978-3-03921-649-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems.

Keywords

adaptive control --- fuzzy logic --- cell --- frequency containment control (FCC) --- power frequency characteristic --- droop control --- smart grids --- substation automation system (SAS) --- high-availability seamless redundancy (HSR) --- seamless communications --- traffic reduction technique --- Power Hardware-in-the-Loop (PHIL) --- interface algorithm (IA) --- operational range of PHIL --- linear/switching amplifier --- cyber-physical energy system --- co-simulation --- conceptual structuration --- coupling method --- linear decision rules --- optimal reserve allocation --- robust optimization --- web of cells --- demand response --- real-time balancing market --- elastic demand bids --- shiftable loads --- market design --- market design elements --- Web-of-Cells --- procurement scheme --- remuneration scheme --- pricing scheme --- cascading procurement --- real-time simulation --- hardware-in-the-Loop --- synchrophasors --- micro-synchrophasors --- distribution phasor measurement units --- distribution grid --- time synchronization --- PHIL (power hardware in the loop) --- simulation initialization --- synchronization --- time delay --- synchronous power system --- stability --- accuracy --- peer-to-peer --- distributed control --- device-to-device communication --- voltage control --- experimentation --- smart grid --- cyber physical co-simulation --- information and communication technology --- 4G Long Term Evolution—LTE --- network reconfiguration --- fault management --- power loss allocation --- plug-in electric vehicle --- smart grid --- locational marginal prices --- microgrid --- resilience --- investment --- underground cabling --- network outage --- battery energy storage system (BESS) --- micro combined heat and power (micro-CHP) --- electricity distribution --- solar photovoltaics (PV) --- islanded operation --- distributed control --- microgrid --- hardware-in-the-loop --- average consensus --- multi-agent system --- active distribution network --- laboratory testbed --- renewable energy sources --- DC link --- centralised control --- interoperability --- smart energy systems --- use cases --- IEC 62559 --- SGAM --- TOGAF --- integration profiles --- IHE --- testing --- gazelle --- connectathon --- Hardware-in-the-Loop --- Software-in-the-Loop --- Power-Hardware-in-the-Loop --- Quasi-Dynamic Power-Hardware-in-the-Loop --- smart grids --- real-time simulation --- validation and testing --- decentralised energy system --- smart grids control strategies --- smart grid --- wind power --- synchronized measurements --- PMU --- data mining --- Architecture --- Development --- Enterprise Architecture Management --- Model-Based Software Engineering --- Smart Grid --- Smart Grid Architecture Model --- System-of-Systems --- Validation --- design, development and implementation methods for smart grid technologies --- modelling and simulation of smart grid systems --- co-simulation-based assessment methods --- validation techniques for innovative smart grid solutions --- real-time simulation and hardware-in-the-loop experiments

Listing 1 - 3 of 3
Sort by
Narrow your search