Search results:
Found 4
Listing 1  4 of 4 
Sort by

Choose an application
This book includes the seven papers that contributed to the Special Issue of Mathematics entitled “Mathematical Methods in Applied Sciences”. The papers are authored by eminent specialists and aim at presenting to a broad audience some mathematical models which appear in different aspects of modern life. New results in Computational Mathematics are given as well. Emphasis is on Medicine and Public Health, in relation also with Social Sciences. The models in this collection apply in particular to the study of brain cells during a stroke, training management efficiency for elite athletes, and optimal surgical operation scheduling. Other models concern Industry and Economy, as well as Biology and Chemistry. Numerical Methods are represented in particular by scattered data interpolation, spectral collocation, and the use of eigenvalues and eigenvectors of the Laplacian matrix. This book will appeal to scientists, teachers, and graduate students in Mathematics, in particular Numerical Analysis, and will be of interest for scholars in Applied Sciences, particularly in Medicine and Public Health.
Laplacian matrix  power flow  admittance matrix  voltage profile  scheduling  operating room scheduling  goal programming  constraint programming  state hospital  spectral collocation method  population balance equation  Chebyshev points  crystallization  shift schedule  goal programming  labor  assignment  personnel  athletes’ condition  approximation  parameter estimation  least squares method  visualization  chemokines  cytokines  eigenvalue stability analysis  neurogenesis  numerical solution  system of ordinary differential equations  scattered data interpolation  cubic timmer triangular patches  cubic ball triangular patches  cubic Bezier triangular patches  convex combination
Choose an application
This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to reallife phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.
Legendre wavelets  collocation method  threestep Taylor method  asymptotic stability  timedependent partial differential equations  noninstantaneous impulses  Caputo fractional derivative  differential equations  state dependent delays  lipschitz stability  limitperiodic solutions  difference equations  exponential dichotomy  strong nonlinearities  effective existence criteria  population dynamics  discrete Lyapunov equation  difference equations  Hilbert space  dichotomy  exponential stability  ?Laplacian operator  mean curvature operator  heteroclinic solutions  problems in the real line  lower and upper solutions  Nagumo condition on the real line  fixed point theory  coupled nonlinear systems  functional boundary conditions  Schauder’s fixed point theory  Arzèla Ascoli theorem  lower and upper solutions  first order periodic systems  SIRS epidemic model  mathematical modelling  Navier–Stokes equations  global solutions  regular solutions  a priori estimates  weak solutions  kinetic energy  dissipation  Bäcklund transformation  Clairin’s method  generalized Liouville equation  Miura transformation  Kortewegde Vries equation  secondorder differential/difference/qdifference equation of hypergeometric type  nonuniform lattices  divideddifference equations  polynomial solution  integrodifferentials  Sumudu decomposition method  dynamical system
Choose an application
The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.
time fractional differential equations  mixedindex problems  analytical solution  asymptotic stability  conservative problems  Hamiltonian problems  energyconserving methods  Poisson problems  Hamiltonian Boundary Value Methods  HBVMs  line integral methods  constrained Hamiltonian problems  Hamiltonian PDEs  highly oscillatory problems  boundary element method  finite difference method  floating strike Asian options  continuous geometric average  barrier options  isogeometric analysis  adaptive methods  hierarchical splines  THBsplines  local refinement  linear systems  preconditioners  Cholesky factorization  limited memory  Volterra integral equations  Volterra integro–differential equations  collocation methods  multistep methods  convergence  Bspline  optimal basis  fractional derivative  Galerkin method  collocation method  spectral (eigenvalue) and singular value distributions  generalized locally Toeplitz sequences  discretization of systems of differential equations  higherorder finite element methods  discontinuous Galerkin methods  finite difference methods  isogeometric analysis  Bsplines  curl–curl operator  time harmonic Maxwell’s equations and magnetostatic problems  low rank completion  matrix ODEs  gradient system  ordinary differential equations  Runge–Kutta  tree  stump  order  elementary differential  edgehistogram  edgepreserving smoothing  histogram specification  initial value problems  onestep methods  Hermite–Obreshkov methods  symplecticity  Bsplines  BS methods  hyperbolic partial differential equations  high order discontinuous Galerkin finite element schemes  shock waves and discontinuities  vectorization and parallelization  high performance computing  generalized Schur algorithm  nullspace  displacement rank  structured matrices  stochastic differential equations  stochastic multistep methods  stochastic Volterra integral equations  meansquare stability  asymptotic stability  numerical analysis  numerical methods  scientific computing  initial value problems  onestep methods  Hermite–Obreshkov methods  symplecticity  Bsplines  BS methods
Choose an application
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably widespread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences.
highly oscillatory  convolution quadrature rule  volterra integral equation  Bessel kernel  convergence  higher order Schwarzian derivatives  Janowski starlike function  Janowski convex function  bound on derivatives  tangent numbers  tangent polynomials  Carlitztype qtangent numbers  Carlitztype qtangent polynomials  (p,q)analogue of tangent numbers and polynomials  (p,q)analogue of tangent zeta function  symmetric identities  zeros  Lommel functions  univalent functions  starlike functions  convex functions  inclusion relationships  analytic function  Hankel determinant  exponential function  upper bound  nonlinear boundary value problems  fractionalorder differential equations  RiemannStieltjes functional integral  LiouvilleCaputo fractional derivative  infinitepoint boundary conditions  advanced and deviated arguments  existence of at least one solution  Fredholm integral equation  Schauder fixed point theorem  Hölder condition  generalized Kuramoto–Sivashinsky equation  modified Kudryashov method  exact solutions  Maple graphs  analytic function  Hadamard product (convolution)  partial sum  Srivastava–Tomovski generalization of Mittag–Leffler function  subordination  differential equation  differential inclusion  Liouville–Caputotype fractional derivative  fractional integral  existence  fixed point  Bernoulli spiral  Grandi curves  Chebyshev polynomials  pseudoChebyshev polynomials  orthogonality property  symmetric  encryption  password  hash  cryptography  PBKDF  q–Bleimann–Butzer–Hahn operators  (p,q)integers  (p,q)Bernstein operators  (p,q)Bleimann–Butzer–Hahn operators  modulus of continuity  rate of approximation  Kfunctional  HurwitzLerch zeta function  generalized functions  analytic number theory  ?generalized HurwitzLerch zeta functions  derivative properties  series representation  basic hypergeometric functions  generating functions  qpolynomials  analytic functions  Mittag–Leffler functions  starlike functions  convex functions  Hardy space  vibrating string equation  initial conditions  spectral decomposition  regular solution  the uniqueness of the solution  the existence of a solution  analytic  ?convex function  starlike function  stronglystarlike function  subordination  q Sheffer–Appell polynomials  generating relations  determinant definition  recurrence relation  q Hermite–Bernoulli polynomials  q Hermite–Euler polynomials  q Hermite–Genocchi polynomials  Volterra integral equations  highly oscillatory Bessel kernel  Hermite interpolation  direct Hermite collocation method  piecewise Hermite collocation method  differential operator  qhypergeometric functions  meromorphic function  Mittag–Leffler function  Hadamard product  differential subordination  starlike functions  Bell numbers  radius estimate  (p, q)integers  Dunkl analogue  generating functions  generalization of exponential function  Szász operator  modulus of continuity  function spaces and their duals  distributions  tempered distributions  Schwartz testing function space  generalized functions  distribution space  wavelet transform of generalized functions  Fourier transform  analytic function  subordination  Dziok–Srivastava operator  nonlinear boundary value problem  nonlocal  multipoint  multistrip  existence  Ulam stability  functions of bounded boundary and bounded radius rotations  subordination  functions with positive real part  uniformly starlike and convex functions  analytic functions  univalent functions  starlike and qstarlike functions  qderivative (or qdifference) operator  sufficient conditions  distortion theorems  Janowski functions  analytic number theory  ?generalized Hurwitz–Lerch zeta functions  derivative properties  recurrence relations  integral representations  Mellin transform  natural transform  Adomian decomposition method  Caputo fractional derivative  generalized mittagleffler function  analytic functions  Hadamard product  starlike functions  qderivative (or qdifference) operator  Hankel determinant  qstarlike functions  fuzzy volterra integrodifferential equations  fuzzy general linear method  fuzzy differential equations  generalized Hukuhara differentiability  spectrum symmetry  DCT  MFCC  audio features  anuran calls  analytic functions  convex functions  starlike functions  strongly convex functions  strongly starlike functions  uniformly convex functions  Struve functions  truncatedexponential polynomials  monomiality principle  generating functions  Apostoltype polynomials and Apostoltype numbers  Bernoulli, Euler and Genocchi polynomials  Bernoulli, Euler, and Genocchi numbers  operational methods  summation formulas  symmetric identities  Euler numbers and polynomials  qEuler numbers and polynomials  HurwitzEuler eta function  multiple HurwitzEuler eta function  higher order qEuler numbers and polynomials  (p, q)Euler numbers and polynomials of higher order  symmetric identities  symmetry of the zero
Listing 1  4 of 4 
Sort by
