Search results: Found 4

Listing 1 - 4 of 4
Sort by
Remote Sensing of Atmospheric Conditions for Wind Energy Applications

Authors: ---
ISBN: 9783038979425 / 9783038979432 Year: Pages: 290 DOI: 10.3390/books978-3-03897-943-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented..

Keywords

detached eddy simulation --- turbulence --- Lidar --- range gate length --- wind energy resources --- QuikSCAT --- WindSAT --- ASCAT --- global ocean --- wind energy --- resource assessment --- power performance testing --- wind turbine controls --- complex flow --- Doppler lidar --- coherent Doppler lidar --- wind sensing --- single-particle --- wind gusts --- Doppler lidar --- detecting and tracking --- impact prediction --- wind energy --- atmospheric boundary layer --- wind turbine wake --- wind lidar --- turbulence --- wake modeling --- field experiments --- wind energy --- atmospheric boundary layer --- wind turbine wake --- wind lidar --- virtual lidar --- turbulence --- wake modeling --- large-eddy simulations --- tropical cyclones --- Doppler Wind Lidar --- atmospheric boundary layer --- wind structure --- wind energy --- Doppler lidar --- wind turbine controls --- lidar-assisted control (LAC) --- IEA Wind Task 32 --- coastal wind measurement --- vertical Light Detection and Ranging --- NeoWins --- fetch effect --- Hazaki Oceanographical Research Station --- empirical equation --- complex terrain --- complex flow --- lidar --- VAD --- remote sensing --- wind energy --- Doppler lidar --- NWP model --- mesoscale --- Floating Lidar System (FLS), wind resource assessment --- wind atlas --- lidar --- wind --- Doppler --- aerosol --- motion estimation --- optical flow --- cross-correlation --- wind energy --- gust prediction --- variational analysis --- Doppler radar --- five-minute ahead wind power forecasting --- probabilistic forecasting --- remote sensing forecasting --- offshore wind speed forecasting --- wind energy --- remote sensing --- Doppler wind lidar --- velocity-azimuth-display algorithm --- resource assessment --- offshore --- turbulence intensity --- Doppler wind lidar --- wind energy --- aerosol --- wind turbine --- wind farm --- wake --- control --- complex terrain --- offshore

Wind Turbine Aerodynamics

Author:
ISBN: 9783039215249 / 9783039215256 Year: Pages: 410 DOI: 10.3390/books978-3-03921-525-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Wind turbine aerodynamics is one of the central subjects of wind turbine technology. To reduce the levelized cost of energy (LCOE), the size of a single wind turbine has been increased to 12 MW at present, with further increases expected in the near future. Big wind turbines and their associated wind farms have many advantages but also challenges. The typical effects are mainly related to the increase in Reynolds number and blade flexibility. This Special Issue is a collection of 21 important research works addressing the aerodynamic challenges appearing in such developments. The 21 research papers cover a wide range of problems related to wind turbine aerodynamics, which includes atmospheric turbulent flow modeling, wind turbine flow modeling, wind turbine design, wind turbine control, wind farm flow modeling in complex terrain, wind turbine noise modeling, vertical axis wind turbine, and offshore wind energy. Readers from all over the globe are expected to greatly benefit from this Special Issue collection regarding their own work and the goal of enabling the technological development of new environmentally friendly and cost-effective wind energy systems in order to reach the target of 100% energy use from renewable sources, worldwide, by 2050

Keywords

H-type floating VAWT --- truss Spar floating foundation --- coupling of aerodynamics and hydrodynamics --- computational fluid dynamics --- wind farm --- complex terrain --- SCADA --- met mast measurements --- wind turbine --- simplified free vortex wake --- vortex ring --- aerodynamics --- axial steady condition --- variable pitch --- H-type VAWT --- straight blade --- DMST model --- NACA0012 --- wind energy --- power coefficient --- tip speed ratio --- wind turbine blade optimization --- computational fluid dynamic --- actuator disc --- wake effect --- Non-dominated Sorting Genetic Algorithm (NSGA-II) --- wind turbine airfoil --- dynamic stall --- boundary layer separation --- aerodynamic characteristics --- rotor blade optimization --- blade parametrization --- computational fluid dynamics --- OpenFOAM --- gradient-based --- adjoint approach --- wind turbine optimization --- low wind speed areas --- cost of energy --- particle swarm optimization --- dynamic stall --- pitch oscillation --- oscillating freestream --- rotational augmentation --- wind turbine --- turbulence --- super-statistics --- piezo-electric flow sensor --- ABL stability --- laminar-turbulent transition --- wind speed extrapolation --- atmospheric stability --- wind shear --- wind resource assessment --- wind turbine --- stall --- NREL Phase VI --- S809 airfoil --- MEXICO --- RANS --- wind turbine wakes --- turbulence --- actuator disk --- LES --- wind tunnel --- OpenFOAM --- wind turbine --- wind turbine design --- optimization --- blade length --- economic analysis --- typhoon --- wind turbine --- meso/microscale --- aerodynamic force --- mechanical performance --- thermography --- wind turbine blades --- defects --- image processing --- condition monitoring --- wind farm --- layout optimization --- design --- random search --- complex terrain --- airfoil design --- aerodynamic --- wind tunnel experiment --- VAWTs (Vertical axis wind turbines) --- computational fluid dynamics --- floating offshore wind turbine --- dynamic fluid body interaction --- semi-submersible platform --- OC5 DeepCWind --- wind turbine --- aerodynamics --- turbulent inflow --- Computational Fluid Dynamics --- blade element momentum theory --- actuator line method --- Fatigue Loads --- wind turbine noise source --- wind turbine noise propagation --- wind turbine wake --- n/a

Remote Sensing of Precipitation: Volume 1

Author:
ISBN: 9783039212859 / 9783039212866 Year: Pages: 480 DOI: 10.3390/books978-3-03921-286-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Remote Sensing of Precipitation: Volume 2

Author:
ISBN: 9783039212873 / 9783039212880 Year: Pages: 318 DOI: 10.3390/books978-3-03921-288-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (4)


Year
From To Submit

2019 (4)