Search results: Found 2

Listing 1 - 2 of 2
Sort by
Environmental and Management Factor Contributions to Maize Yield

Authors: ---
ISBN: 9783038976127 9783038976134 Year: Pages: 202 DOI: 10.3390/books978-3-03897-613-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Environmental Sciences
Added to DOAB on : 2019-02-12 11:50:48
License:

Loading...
Export citation

Choose an application

Abstract

Agricultural production must increase substantially to meet the increasing per capita demand for food, feed, fuel, and fiber of a rising human census. The amount of arable land is limited due to soil type, weather, and ecosystem considerations; therefore, it is necessary to increase yields on current fields. To obtain the greatest maize (Zea mays L.) yield, a farmer needs to nurture the crop as much as possible. Weather and nitrogen availability are well- known as two factors that normally have the greatest influence on maize yields and grain quality. Some management factors a producer may need to consider while growing a maize crop are mineral fertilization, genotype, plant population, and protection from insects and diseases. Additionally, there are numerous biological and chemical compounds that can stimulate plant growth, such as in-furrow mixes and foliar fungicides. Field management also plays a role in final grain yield, including crop rotation, tillage, soil pH and nutrient levels, weed control, and drainage.This Special Issue Book focuses on weather, soil, and other maize crop management factors and their relative independent and/or interactive influence on maize growth and yield.]

Viticulture and Winemaking under Climate Change

Author:
ISBN: 9783039219742 9783039219759 Year: Pages: 294 DOI: 10.3390/books978-3-03921-975-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Meteorology and Climatology
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The importance of viticulture and the winemaking socio-economic sector is acknowledged worldwide. The most renowned winemaking regions show very specific environmental characteristics, where climate usually plays a central role. Considering the strong influence of weather and climatic factors on grapevine yields and berry quality attributes, climate change may indeed significantly impact this crop. Recent trends already point to a pronounced increase in growing season mean temperatures, as well as changes in precipitation regimes, which have been influencing wine typicity across some of the most renowned winemaking regions worldwide. Moreover, several climate scenarios give evidence of enhanced stress conditions for grapevine growth until the end of the century. Although grapevines have high resilience, the clear evidence for significant climate change in the upcoming decades urges adaptation and mitigation measures to be taken by sector stakeholders. To provide hints on the abovementioned issues, we have edited a Special Issue entitled “Viticulture and Winemaking under Climate Change”. Contributions from different fields were considered, including crop and climate modeling, and potential adaptation measures against these threats. The current Special Issue allows for the expansion of scientific knowledge in these particular fields of research, as well as providing a path for future research.

Keywords

viticulture --- crop model --- phenology --- physiological processes --- climate --- micrometeorology --- microclimate --- climate change --- water limitation --- dry mass partitioning --- assimilation --- intercellular CO2 --- stomatal conductance --- leaf water potential --- Vitis vinifera L. --- production system --- S-ABA --- rate of anthocyanin accumulation --- CIRG --- bioactive compounds --- Botrytis cinerea --- low-input --- mechanical thinning --- viticultural training system --- yield formation --- leaf area --- table grapes --- photosynthesis --- berry composition --- phenolics --- natural hail --- grapevine --- phenology --- phenology modelling platform --- Touriga Franca --- Touriga Nacional --- climate change --- RCP4.5 --- EURO-CORDEX --- Douro wine region --- Portugal --- global warming --- technological and phenolic ripeness --- grape --- wine --- sensory analysis --- climate change --- elevated CO2 --- grapevine pest --- mealybug --- parasitoid --- FACE --- predawn water potential --- PRI --- remote sensing --- vineyards --- water status --- WI --- climate change --- Vitis vinifera L. --- general circulation model --- EURO-CORDEX --- phenological model --- grapevine --- Virtual Riesling --- climate change --- temperature --- plant architecture --- crop management --- modelling --- climate change --- viticulture --- adaptation --- temperature --- drought --- plant material --- rootstock --- training system --- phenology --- modeling --- Vitis vinifera --- autochthonous cultivar --- ’Uva Rey’ --- unmanned aerial vehicles --- vigour maps --- spatial variability --- normalized difference vegetation index --- crop water stress index --- crop surface model --- precision viticulture --- climate change --- multi-temporal analysis --- Vitis vinifera (L.) --- SO2 pads --- B. cinerea mold --- grape quality --- light micro-climates --- mitigation strategies --- kaolin --- irrigation --- Vitis vinifera L. --- grape berry tissues --- pulse amplitude modulated (PAM) fluorometry --- photosynthesis --- photosynthetic pigments --- viticulture --- winemaking --- climatic influence --- climate change --- adaptation measures

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2019 (2)