Search results: Found 6

Listing 1 - 6 of 6
Sort by
A dynamic interplay between membranes and the cytoskeleton critical for cell development and signaling

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193233 Year: Pages: 80 DOI: 10.3389/978-2-88919-323-3 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Various cellular processes underlying plant development and response to environmental cues rely on a dynamic interplay between membranes and the cytoskeleton, e.g. vesicle and organelle trafficking, endocytosis, exocytosis, and signal transduction. In recent years, significant progress in the understanding of such interplay has been achieved and several critical links between membranes and the cytoskeleton have been characterized. As an example, recent work has clarified how auxin promotes the reorganization of cortical actin filaments by the activation of Rho GTPase pathways, and how such reorganization in turn locally modifies endocytosis and/or exocytosis and directs asymmetric distribution of PIN family of auxin transporters. Another recent achievement is the characterization of the Rho- and microtubule-driven mechanism by which the cell wall architecture is established. In particular, the elegant work by Oda and Fukuda (Science 337 p.1333, 2012) provides evidence that secondary wall patterning in xylem vessel primarily relies on two processes: a local activation of the plant Rho GTPase ROP11 and a mutual, MIDD1-mediated, inhibitory interaction between active ROP domains and cortical microtubules. Additional examples include recent genetic evidence that microtubule and actin filament interacting/regulatory proteins, such as MAP65-1 and capping protein, function as transducers of membrane lipid signaling into changes in cytoskeleton dynamics and organization. This Research Topic aims at collecting a comprehensive set of articles dealing with cellular processes involving membrane-cytoskeleton interactions. Its scope extends beyond the specific fields defined by the above examples and includes intracellular trafficking, host-pathogen interactions, response to biotic and abiotic stresses and hormonal regulation of growth. We hope that this Research Topic will also highlight critical questions that need to be addressed in the future. We welcomed Original Research Articles, Technical/Methodological Advances (e.g. analysis of cytoskeleton dynamics close to membranes), Reviews and Mini Reviews that can expand our understanding of how and why membranes and the cytoskeleton interact.

Molecular Dynamics at the Immunological Synapse

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451333 Year: Pages: 120 DOI: 10.3389/978-2-88945-133-3 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

The immunological synapse (IS) is a specialised cell-cell adhesion that mediates antigen acquisition and regulates the activation of lymphocytes. Initial studies of the IS showed a structure composed of stable supra-molecular activation clusters (SMAC) organised during the interaction of helper T lymphocytes with B lymphocytes, working as antigen presenting cells. A central SMAC of coalesced T cell receptors (TCRs) and a peripheral SMAC for cell-cell adhesion were observed. IS with similar structure was later described during antigen acquisition by B cells and during the interaction of NK cells with target and healthy cells. More recent research developed with microscopy systems that improve the spatial and temporal resolution has showed the complex molecular dynamics at the IS that governs lymphocyte activation. Currently, the IS is seen as a three-dimensional structure where signalling networks for lymphocyte activation and endosomal and cytoskeleton machinery are polarised. A view has emerged in which dynamic microclusters of signalling complexes are composed of molecular components attached to the plasma membrane and other components conveyed on sub-synaptic vesicles transported to the membrane by cytoskeletal fibers and motor proteins. Much information is nonetheless missing about how the dynamics of the endosomal compartment, the cytoskeleton, and signalling complexes are reciprocally regulated to achieve the function of lymphocytes. Experimental evidence also suggests that the environment surrounding lymphocytes exposed to different antigenic challenge regulates IS assembly and functional output, making an even more complex scenario still far from being completely understood. Also, although some signalling molecular components for lymphocyte activation have been identified and thoroughly studied, the function of other molecules has not been yet uncovered or deeply characterised. This research topic aims to provide the reader with the latest information about the molecular dynamics governing lymphocyte activation. These molecular dynamics dictate cell decisions. Thus, we expect that understanding them will provide new avenues for cell manipulation in therapies to treat different immune-related pathologies.

Emerging Functions of Septins

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452873 Year: Pages: 126 DOI: 10.3389/978-2-88945-287-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Biology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Together with the microfilament, microtubule and intermediate-filament networks, septins constitute an integral part of the eukaryotic cytoskeleton. Historically identified as proteins critical for septum formation in the budding yeast Saccharomyces cerevisiae, septin family GTPases are expressed and participate in the process of cytokinesis in most eukaryotes except higher plants. More than a dozen septin genes in mammals, together with various splice variants displaying tissue-specific expression patterns and flexible hetero-polymeric higher-order assembly achieve an unfathomable complexity superior to the other cytoskeletal components. Even though the initial studies in the septin field was restricted to their evolutionarily conserved role in cell division, strong expression of septins in the non-dividing cells of the brain generated great interest in understanding their role in neuronal morphogenesis and other aspects of cellular function. On one hand, recent developments indicate complex non-canonical roles for septins in diverse processes ranging from neuronal development to immune response and calcium signaling. On the other hand several lines of data including those from knockout models question the universal role for septins in animal cell cytokinesis. Mammalian hematopoietic cells seem to proliferate and efficiently undergo cytokinesis in the absence of pivotal septin proteins in a context-dependent manner. The lack of septin-dependence of hematopoiesis also opens the possibility of safely targeting septin-dependent cytokinesis for solid-tumor therapy. Thus the septin field is perfectly poised with novel roles for septins being discovered and the basic understanding on septin assembly and its canonical functions constantly revisited. The objective of this research topic was to provide an exclusive platform for discussing these rapid advances in the septin field. With a mixture of reviews and research articles encompassing diverse areas of septin research, ranging from the humble yeast model to human cancer, this ebook will be an interesting reading material for both experts as well as new comers to the septin field.

Keywords

septin --- cytokinesis --- Cilia --- mutation --- GTPase --- cytoskeleton --- yeast --- budding --- SOCE --- cancer

In vivo Cell Biology of Cerebral Cortical Development and Its Related Neurological Disorders: Cellular Insights into Neurogenesis and Neuronal Migration

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199624 Year: Pages: 268 DOI: 10.3389/978-2-88919-962-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The brain consists of a complex but precisely organized neural network, which provides the structural basis of higher order functions. Such a complex structure originates from a simple pseudostratified neuroepithelium. During the developing mammalian cerebral cortex, a cohort of neural progenitors, located near the ventricle, differentiates into neurons and exhibits multi-step modes of migration toward the pial surface. Tight regulation of neurogenesis and neuronal migration is essential for the determination of the neuron number in adult brains and the proper positioning of excitatory and inhibitory neurons in a specific layer, respectively. In addition, defects in neurogenesis and neuronal migration can cause several neurological disorders, such as microcephaly, periventricular heterotopia and lissencephaly. Recent advances in genetic approaches to study the developing cerebral cortex, as well as the use of a number of novel techniques, particularly in vivo electroporation and time-lapse analyses using explant slice cultures, have significantly increased our understanding of cortical development. These novel techniques have allowed for cell biological analyses of cerebral cortical development in vivo or ex vivo, showing that many cellular events, including endocytosis, cell adhesion, microtubule and actin cytoskeletal regulation, neurotransmitter release, stress response, the consequence of cellular crowding (physical force), dynamics of transcription factors, midbody release and polarity transition are required for neurogenesis and/or neuronal migration. The aim of this research topic is to highlight molecular and cellular mechanisms underlying cerebral cortical development and its related neurological disorders from the cell biological point of views, such as cell division, cell-cycle regulation, cytoskeletal organization, cell adhesion and membrane trafficking. The topic has been organized into three chapters: 1) neurogenesis and cell fate determination, 2) neuronal migration and 3) cortical development-related neurological disorders. We hope that the results and discussions contributed by all authors in this research topic will be broadly useful for further advances in basic research, as well as improvements in the etiology and care of patients suffering from neurological and psychiatric disorders.

Mechanisms of Mitotic Chromosome Segregation

Author:
ISBN: 9783038424031 9783038424024 Year: Pages: VIII, 332 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-05-10 09:52:09
License:

Loading...
Export citation

Choose an application

Abstract

This book describes current knowledge about the mechanisms by which cells segregate their already duplicated chromosomes in preparation for cell division. Experts in the field treat several important aspects of this subject: (1) the history of research on mitotic mechanisms, to serve as a background; (2) assembly of the mitotic spindle; (3) Kinetochore assembly and function; (4) the mechanisms of chromosome congression to the metaphase plate; (5) the spindle assembly checkpoint; (6) mechanisms to avoid and correct erroneous chromosome attachments to the spindle; (7) a molecular perspective on spindle assembly in land plants; (8) chromosome segregation in anaphase A; (9) spindle elongation in anaphase B; and (10) the consequences of errors in chromosome segregation. Each chapter provides the reader with a comprehensive and accurate picture of current research in a form that is both readable and authoritative. The volume is suitable for scholars in this and related fields and for teaching at an advanced level.

Plant Development and Organogenesis: From Basic Principles to Applied Research

Author:
ISBN: 9783039281268 / 9783039281275 Year: Pages: 246 DOI: 10.3390/books978-3-03928-127-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Plant Sciences --- Biology --- Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.

Keywords

wheat-rye hybrids --- genes of reproductive isolation --- stem apical meristem --- molecular marker --- Rht18 --- reduced height --- wheat --- semi-dwarf --- linkage map --- CLE --- CLV --- WUS --- stem cells --- meristem --- SAM --- signaling --- locule --- Arabidopsis --- auxin --- HD-Zip transcription factors --- light environment --- photoreceptors --- wounding --- root plasticity --- hydrogen peroxide --- protoxylem --- plant development and organogenesis --- proline biosynthesis --- RolD --- rol genes --- Vasculature --- Organogenesis --- Development --- Brassicaceae --- Asteraceae --- flowering time --- photoperiod --- vernalization --- ambient temperature --- gibberellins --- age --- plant breeding --- grass --- ligule --- organogenesis --- boundaries --- shoot meristem --- morphogenesis --- molecular regulation --- cell wall --- cytoskeleton --- Arabidopsis --- root --- stem cells --- root development --- differentiation --- ground tissue --- radial patterning --- proximodistal patterning --- Plant in vitro cultures --- somatic cell selection --- hairy roots --- rol genes --- Agrobacterium rhizogenes --- genetic transformation --- recalcitrant species --- KNOX transcription factors --- plant development --- tree phase change --- transformation --- morphogenic --- embryogenesis --- meristem formation --- organogenesis --- GRETCHEN HAGEN 3 (GH3) IAA-amido synthase group II --- root apical meristem --- auxin --- cytokinin --- lateral root cap --- auxin minimum --- auxin conjugation --- plant development and organogenesis --- translational research --- crop productivity --- genetic improvement --- Arabidopsis thaliana --- regulatory networks --- phytohormones --- rol genes --- plant cell and tissue culture

Listing 1 - 6 of 6
Sort by
Narrow your search
-->