Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Homecare

Authors: --- --- ---
ISBN: 9783954662968 9783954663712 Year: Language: German
Publisher: MWV Medizinisch Wissenschaftliche Verlagsgesellschaft Grant: Knowledge Unlatched - 101756
Subject: Public Health
Added to DOAB on : 2018-01-11 11:01:55
License:

Loading...
Export citation

Choose an application

Abstract

Homecare ist ein junger Bereich, der die stationäre Versorgung mit der ambulanten Nachsorge verbindet und sämtliche weitere Versorger koordiniert. In der Praxis scheitert diese Idee derzeit noch häufig an fehlenden oder unpräzisen rechtlichen Rahmenbedingungen sowie Akzeptanzbarrieren.Dieses Buch bietet einen umfassenden Überblick der aktuellen Versorgungssituation im Homecare-Bereich in Deutschland. Es diskutiert den Homecare-Markt und seine Potentiale, die rechtlichen Rahmenbedingungen und gibt einen Überblick über nationale und internationale Studien zur Effektivität von Entlassmanagement und sektorenübergreifender Versorgung. Ein Praxisteil präsentiert Ergebnisse einer umfassenden empirischen Studie, die die Perspektiven von niedergelassenen Ärzten, Kliniken und stationärer sowie ambulanter Pflege zum Thema Homecare untersucht. Die Ergebnisse der Studie geben Aufschluss über die praktische Umsetzung der Homecare-Idee im Versorgungsalltag sowie die Potentiale und Risiken.

Advances in Hydro-Meteorological Monitoring

Authors: ---
ISBN: 9783038429777 9783038429784 Year: Pages: 200 DOI: 10.3390/books978-3-03842-978-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Sciences
Added to DOAB on : 2018-10-09 08:55:30
License:

Loading...
Export citation

Choose an application

Abstract

Basin hydrology is related to the soil–atmosphere interaction driven by several blended processes constrained by the space–time variability of precipitation and soil moisture, along with overland flow and flood routing in natural channels. The emerging technologies for the monitoring and prediction of the spatial and temporal distribution of rainfall and soil moisture over a catchment, as well as the hillslope and river runoff, are of considerable interest to predict the hydrological responses of a catchment. In this context, this Special Issue, with its eleven theoretical and applied contributions, aims to shed light on the more recent advances in ground observations and remote sensing products, as well as on the benefits resulting from the integration of technological innovation and the development of new ideas in hydrology science. To this purpose, the accepted articles, written by leading researchers in their field, are intended to present and discuss experimental analyses at the catchment scale in terms of: a) intensive measurement campaigns of soil moisture by in situ sensors, remote sensing and modelling approaches; b) discharge monitoring also for high floods, by leveraging advanced technology for ground surface velocity measurements and spaceborne observations of water surface elevation, river width and slope; c) solid precipitation-measuring methods and the selection of snow gauge stations by merging meteorological, hydrological and remote sensing datasets; d) changes in daily precipitation of different intensities over large river basins along with the identification of the space–time rainfall field for different climatic regions ; and finally e) spatial evaporation patterns in different climate regions and assessment of the dominant climate factors affecting the evaporative demand of the atmosphere. Hopefully this Special Issue provides different useful insights into advancements in emerging technologies for the monitoring of key hydrological variables and will support the design of a scalable system of operational tools leading to suitable flood mitigation measures and reliable real-time warning systems.

Untersuchung der Hochvoltstabilität und Tiefentladung von dotierten LiNi0,5Mn1,5O4-Hochvoltspinellen

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731507284 Year: Volume: 73 Pages: X, 249 p. DOI: 10.5445/KSP/1000074496 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

Due to its high operating voltage the so-called high voltage spinel (LiNi0,5Mn1,5O4) is a promising cathode material. In this work the kinetics of the capacity loss during cycling and its change due to different coatings are analyzed. In a second part the electrochemical behavior for the insertion of a second lithium per formula unit is discussed for different doped spinel materials.

Mechanisms underlying firing in healthy and sick human motoneurons

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195923 Year: Pages: 134 DOI: 10.3389/978-2-88919-592-3 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Since the latter half of the twentieth century an enormous amount of knowledge about mammalian motoneuron pools has been collected. This progress was enabled mostly by the development of the precise techniques of intracellular recordings in acute animal experiments, many of which were conducted under deep anaesthesia. Recently obtained evidence indicates that anaesthetics used at that times changed certain properties of the cell membrane, which might affect firing of the neuron. Experiments on normal humans gets around this problem, which lets one compare MN firing characteristics in humans and reduced preparations. Firing pattern of human motoneurons is obtained indirectly by recording from a few muscle fibres of a motor unit. Since there is one-to-one relationship between motor unit and motoneuron firing, the statistical analysis of motor unit firing is equivalent to the analysis of motoneuron firing. This analysis, based on the essential knowledge about motoneuron physiology, gained from the direct measurements in animal experiments and verified by computer simulations, allows one to draw conclusions about the physiological properties of human motoneurons. For obvious reasons, the deductions made on properties of human motoneuron from these analyses should be accepted with caution. On the other hand, human experiments provide the unique opportunity to study intact motoneurons during normal physiological behavior. Thus, combining information obtained from animal and human experiments, and computer simulations, gives insight into underexplored problems of motor control. This E-book contains a collection of articles with range of exciting findings on the physiology and pathology of human motoneurons. The collection covers such important issues concerning firing of healthy motoneurons as recruitment and rate coding as well as motoneuron excitability, discusses intrinsic motoneuron properties disclosed by studying double discharges, and provides information on broad spectrum of motoneuron pathology. It is our hope that this collection promotes further expansion of knowledge on human motoneurons.

Power Transformer Diagnostics, Monitoring and Design Features

Author:
ISBN: 9783038974413 / 9783038974420 Year: Pages: 254 DOI: 10.3390/books978-3-03897-442-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2019-01-09 11:54:22
License:

Loading...
Export citation

Choose an application

Abstract

Power transformers are key components in electric power distribution and transmission systems, and it is essential that they function properly for many years. With increasing age, there are potential risks of extremely high monetary losses due to unexpected failures and outages. A simple solution would be to replace all aging and risky transformers at once with new ones. Such an approach is obviously not a fiscally realistic solution. The main objectives are to extend their service life and optimize their performance through increased availability. For these reasons, in the past decades transformer life management has gained an ever-increasing interest. The greatest challenges are related to the need for methods to assess their condition and life expectancy along with the improvement of transformers’ efficiency by noble designs and/or the application of new materials. This book covers some theoretical and practical developments with special emphasis on R&D trends in transformer diagnostics and monitoring. Graduate-level students and academics as well as scientists and engineers involved in power equipment design, diagnostics, and monitoring will benefit from this book.

Plasma Catalysis

Author:
ISBN: 9783038977506 Year: Pages: 246 DOI: 10.3390/books978-3-03897-751-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Engineering --- Technology (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC

SPIG2018

Authors: --- --- ---
ISBN: 9783038978503 9783038978510 Year: Pages: 288 DOI: 10.3390/books978-3-03897-851-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Nuclear Physics
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue covers a wide range of topics from fundamental studies to applications of ionized gases. It is dedicated to four topics of interest: 1. ATOMIC COLLISION PROCESSES (electron and photon interactions with atomic particles, heavy particle collisions, swarms, and transport phenomena); 2. PARTICLE AND LASER BEAM INTERACTION WITH SOLIDS (atomic collisions in solids, sputtering and deposition, and laser and plasma interactions with surfaces); 3. LOW TEMPERATURE PLASMAS (plasma spectroscopy and other diagnostic methods, gas discharges, and plasma applications and devices); 4. GENERAL PLASMAS (fusion plasmas, astrophysical plasmas, and collective phenomena). This Special Issue of Atoms will highlight the need for continued research on ionized gas physics in different topics ranging from fundamental studies to applications, and will review current investigations.

Keywords

strong-field physics --- attoscience --- bicircular field --- high-order harmonic generation --- above-threshold ionization --- spin-polarized electrons --- capacitively-coupled discharge --- oxygen --- particle-in-cell/Monte Carlo collision --- electron heating --- secondary electron emission --- Large Helical Device (LHD) --- deuterium experiment --- ion temperature of 10 keV --- plasma research --- spectroscopic study --- dispersion interferometer --- modified theories of gravity --- methods: analytical --- methods: numerical --- galaxies: elliptical --- galaxies: fundamental parameters --- non-equilibrium --- collisions --- radiation --- planetary atmospheric entry --- laser matter interaction --- laser-induced breakdown --- plasma --- spectroscopy --- streak camera --- plasma --- spectral lines --- Stark broadening --- oxygen --- silicon --- spectroscopy --- gas discharges --- plasma applications --- databases --- virtual observatory --- cross sections --- rate coefficients --- runway electron --- plasma current --- fusion plasma --- tokamak --- glow discharge --- argon --- nitrogen admixture --- discharge voltage --- diffuse discharge --- constricted discharge --- electrical theory of DBDs --- QV-plot --- instantaneous power --- rainbow scattering --- positron channeling effect --- time-dependent Schrödinger equation --- chiral single wall carbon nanotubes --- black hole physics --- cosmology --- quasar spectroscopy --- cosmological parameters --- ionized gas --- broad line region --- Rydberg atoms --- dynamic instability --- control of atomic states --- Förster resonance --- plasma spectroscopy --- Stark broadening --- plasma diagnostics --- line shape modeling --- Zeeman-Doppler broadening --- Balmer line series --- radiative recombination --- photoacoustic --- photothermal --- inverse problem --- thermal memory --- minimum volume cell --- neural networks --- thermal diffusivity --- conductivity --- linear coefficient of thermal extension --- AGN --- black holes --- gravitational waves --- binary black holes --- quasars --- photodetachment --- magnetically confined fusion --- neutral beam injection --- plasma heating --- optical cavity amplification --- low-energy electrons --- electron–molecule interactions --- astrochemistry --- laboratory plasma --- astrophysical plasma --- fusion plasma --- lasers --- stars --- extragalactic objects --- spectra --- spectroscopy --- scaling laws

Product/Process Fingerprint in Micro Manufacturing

Author:
ISBN: 9783039210343 / 9783039210350 Year: Pages: 274 DOI: 10.3390/books978-3-03921-035-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.

Keywords

micro-injection moulding --- quality assurance --- process monitoring --- micro metrology --- positioning platform --- Halbach linear motor --- commercial control hardware --- diffractive optics --- gratings --- microfabrication --- computer holography --- manufacturing signature --- process fingerprint --- Fresnel lenses --- injection compression molding --- injection molding --- micro structures replication --- confocal microscopy --- optical quality control --- uncertainty budget --- optimization --- precision injection molding --- quality control --- process monitoring --- product fingerprint --- process fingerprint --- electrical discharge machining --- electrical discharge machining (EDM) --- surface roughness --- surface integrity --- optimization --- desirability function --- satellite drop --- electrohydrodynamic jet printing --- charge relaxation time --- laser ablation --- superhydrophobic surface --- process fingerprint --- product fingerprint --- surface morphology --- artificial compound eye --- multi-spectral imaging --- lithography --- spectral splitting --- plasma-electrolytic polishing --- PeP --- surface modification --- finishing --- electro chemical machining --- ECM --- Electro sinter forging --- resistance sintering --- electrical current --- fingerprints --- electrical discharge machining --- micro drilling --- process monitoring --- quality control --- electrochemical machining (ECM) --- process control --- current monitoring --- current density --- surface roughness --- inline metrology --- haptic actuator --- impact analysis --- high strain rate effect --- damping --- 2-step analysis --- micro-grinding --- bioceramics --- materials characterisation --- dental implant --- microinjection moulding --- process fingerprints --- flow length --- quality assurance --- n/a

Volcanic Plumes.Impacts on the Atmosphere and Insights into Volcanic Processes

Authors: --- ---
ISBN: 9783038976288 Year: Pages: 252 DOI: 10.3390/books978-3-03897-629-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.

Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 / 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Listing 1 - 10 of 13 << page
of 2
>>
Sort by