Search results: Found 4

Listing 1 - 4 of 4
Sort by
Management of Fusarium Species and their Mycotoxins in Cereal Food and Feed

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452941 Year: Pages: 259 DOI: 10.3389/978-2-88945-294-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Health and safety of food and feed are the most important criteria for their quality. The quality of feed is in turn important for animal health, the environment and for the safety of food from animal origin. Fungi belonging to the Fusarium genus are widespread in crops causing plant diseases and producing toxic metabolites. Fusarium species can colonize plants during their growth on the field and cause serious damage in terms of yield and quality of harvested grains. One of the most important fungal diseases of wheat and other cereals in the world is Fusarium head blight caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum and others. In addition, these fungi produce mycotoxins, contaminating food and feed. The most important Fusarium mycotoxins include trichothecenes, zearalenone and fumonisins, primarily because of their prevalence, but also because of the toxic effect to humans and animals. However, these fungi produce also other mycotoxins such as moniliformin, beauvericin, enniantin or fusarins. Food and feed can be contaminated with mycotoxins at various stages in the production chain resulting in serious problems with health, safety and economic losses. It is estimated that 25% of the crop in the world each year are contaminated with these metabolites, the problem affects both industrialized countries and developing countries. The aim of this Research Topic of Frontiers in Microbiology is to publish state of the art research about occurrence and genomics of Fusarium species and their mycotoxins in the whole food and feed chain starting from the crops as well as implications for health and economic aspects. This research topic highlights the current knowledge on the plant diseases caused by Fusarium fungi as well as all aspects of Fusarium mycotoxin contamination of crops, food and feed, taking into account decontamination methods.

Advances in Ascochyta Research

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456345 Year: Pages: 195 DOI: 10.3389/978-2-88945-634-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Legume crops provide an excellent source of high quality plant protein and have a key role in arable crop rotations reducing the need for fertilizer application and acting as break-crops. However, these crops are affected by a number of foliar and root diseases, being ascochyta blights the most important group of diseases worldwide. Ascochyta blights are incited by different pathogens in the various legumes. A number of control strategies have been developed including resistance breeding, cultural practices and chemical control. However, only marginal successes have been achieved in most instances, most control methods being uneconomical, hard to achieve or resulting in incomplete protection. This eBook covers recent advances in co-operative research on these diseases, from agronomy to breeding, covering traditional and modern genomic methodologies.

Advances in Farm Animal Genomic Resources

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197354 Year: Pages: 293 DOI: 10.3389/978-2-88919-735-4 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

The history of livestock started with the domestication of their wild ancestors: a restricted number of species allowed to be tamed and entered a symbiotic relationship with humans. In exchange for food, shelter and protection, they provided us with meat, eggs, hides, wool and draught power, thus contributing considerably to our economic and cultural development. Depending on the species, domestication took place in different areas and periods. After domestication, livestock spread over all inhabited regions of the earth, accompanying human migrations and becoming also trade objects. This required an adaptation to different climates and varying styles of husbandry and resulted in an enormous phenotypic diversity. Approximately 200 years ago, the situation started to change with the rise of the concept of breed. Animals were selected for the same visible characteristics, and crossing with different phenotypes was reduced. This resulted in the formation of different breeds, mostly genetically isolated from other populations. A few decades ago, selection pressure was increased again with intensive production focusing on a limited range of types and a subsequent loss of genetic diversity. For short-term economic reasons, farmers have abandoned traditional breeds. As a consequence, during the 20th century, at least 28% of farm animal breeds became extinct, rare or endangered. The situation is alarming in developing countries, where native breeds adapted to local environments and diseases are being replaced by industrial breeds. In the most marginal areas, farm animals are considered to be essential for viable land use and, in the developing world, a major pathway out of poverty. Historic documentation from the period before the breed formation is scarce. Thus, reconstruction of the history of livestock populations depends on archaeological, archeo-zoological and DNA analysis of extant populations. Scientific research into genetic diversity takes advantage of the rapid advances in molecular genetics. Studies of mitochondrial DNA, microsatellite DNA profiling and Y-chromosomes have revealed details on the process of domestication, on the diversity retained by breeds and on relationships between breeds. However, we only see a small part of the genetic information and the advent of new technologies is most timely in order to answer many essential questions. High-throughput single-nucleotide polymorphism genotyping is about to be available for all major farm animal species. The recent development of sequencing techniques calls for new methods of data management and analysis and for new ideas for the extraction of information. To make sense of this information in practical conditions, integration of geo-environmental and socio-economic data are key elements. The study and management of farm animal genomic resources (FAnGR) is indeed a major multidisciplinary issue. The goal of the present Research Topic was to collect contributions of high scientific quality relevant to biodiversity management, and applying new methods to either new genomic and bioinformatics approaches for characterization of FAnGR, to the development of FAnGR conservation methods applied ex-situ and in-situ, to socio-economic aspects of FAnGR conservation, to transfer of lessons between wildlife and livestock biodiversity conservation, and to the contribution of FAnGR to a transition in agriculture (FAnGR and agro-ecology).

Plant Innate Immunity 2.0

Author:
ISBN: 9783038975809 Year: Pages: 386 DOI: 10.3390/books978-3-03897-581-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

dieback --- disease management --- Lasiodiplodia theobromae --- mango --- pathogenicity --- Bromoviridae --- plant–virus interactions --- plant defense response --- Prune dwarf virus --- replication process --- systemic and local movement --- plant proteases --- plant immunity --- MTI --- ETI --- SAR --- ISR --- RNA silencing --- RTNLB --- Agrobacterium --- biotic stress responses --- calcium --- calcium signature --- calmodulin --- CMLs --- CDPKs --- plant immunity --- symbiosis --- cell wall --- cellulose synthase --- hypersensitive response --- pathogenesis related-protein 2 --- plant-virus interaction --- Potato virus Y --- ultrastructure --- aphid resistance --- Arabidopsis thaliana --- hydroperoxide lyase --- Macrosiphum euphorbiae --- Myzus persicae --- Solanum lycopersicum --- ?-3 fatty acid desaturase --- Arabidopsis --- azelaic acid --- glycerol-3-phosphate --- light dependent signalling --- methyl salicylate --- N-hydroxypipecolic acid --- pipecolic acid --- salicylic acid --- SAR signalling --- spectral distribution of light --- tobacco --- rice --- Chilo suppressalis --- mitogen-activated protein kinase 4 --- jasmonic acid --- salicylic acid --- ethylene --- herbivore-induced defense response --- downy mildew --- grapevine --- PRRs --- PTI --- VaHAESA --- bismerthiazol --- rice --- induced defense responses --- chemical elicitors --- Sogatella furcifera --- defense-related signaling pathways --- tomato gray mold --- tomato leaf mold --- Bacillus subtilis --- biological control --- Capsicum annuum --- Ralstonia solanacearum --- CaWRKY40b --- immunity --- negative regulator --- transcriptional modulation --- Capsicum annuum --- CaWRKY22 --- immunity --- Ralstonia Solanacearum --- WRKY networks --- metabolomics --- plant defence --- plant–microbe interactions --- priming --- pre-conditioning --- citrus decline disease --- Citrus sinensis --- Bakraee --- “Candidatus Liberibacter” --- “Candidatus Phytoplasma” --- microbiota --- innate immunity --- basal defense --- rice blast --- Magnaporthe oryzae --- proteomics --- iTRAQ --- candidate disease resistance gene --- disease resistance --- downy mildew --- garden impatiens --- leaf transcriptome --- New Guinea impatiens --- RNA-Seq --- polyphenol oxidase --- Camellia sinensis --- Ectropis obliqua --- wounding --- regurgitant --- rice --- OsGID1 --- gibberellin --- herbivore-induced plant defenses --- Nilaparvata lugens --- plant protection products --- agrochemicals --- sustainable crop protection --- food security

Listing 1 - 4 of 4
Sort by
Narrow your search