Search results: Found 6

Listing 1 - 6 of 6
Sort by
Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Remote Sensing of Precipitation: Volume 1

Author:
ISBN: 9783039212859 / 9783039212866 Year: Pages: 480 DOI: 10.3390/books978-3-03921-286-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Remote Sensing of Precipitation: Volume 2

Author:
ISBN: 9783039212873 / 9783039212880 Year: Pages: 318 DOI: 10.3390/books978-3-03921-288-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Adaptive Catchment Management and Reservoir Operation

Authors: --- ---
ISBN: 9783038977384 / 9783038977391 Year: Pages: 498 DOI: 10.3390/books978-3-03897-739-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

River catchments and reservoirs play a central role in water security, food supply, flood risk management, hydropower generation, and ecosystem services; however, they are now under increasing pressure from population growth, economic activities, and changing climate means and extremes in many parts of the world. Adaptive management of river catchments and reservoirs requires an in-depth understanding of the impacts of future uncertainties and thus the development of robust, sustainable solutions to meet the needs of various stakeholders and the environment. To tackle the huge challenges in moving towards adaptive catchment management, this book presents the latest developments in cutting-edge knowledge, novel methodologies, innovative management strategies, and case studies, focusing on the following themes: reservoir dynamics and impact analysis of dam construction, optimal reservoir operation, climate change impacts on hydrological processes and water management, and integrated catchment management.

Keywords

Siemianówka --- hydrology --- Narew River --- dam --- reservoir --- discharge --- flow regime --- reservoir flushing --- numerical simulation --- flushing efficiency --- Kurobe River --- two-dimensional bed evolution model --- sediment flushing of empty storage --- shaft spillway pipe --- sediment flushing efficiency --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- Jingjiang River Reach --- Yangtze River --- CO2 --- reservoirs --- general regression neural network --- back propagation neural network --- climate change --- CMIP3 --- CMIP5 --- downscaling --- runoff response --- SWAT model --- stochastic linear programming --- Markov chain --- reliability --- vulnerability --- reservoir operation --- stochastic dynamic programming --- protection zone --- nutrient uptake --- NPP --- South-to-North Water Transfer Project --- Miyun Reservoir --- reservoir operation --- optimization --- SWAT --- HEC-ResPRM --- climate change --- CORDEX-Africa --- Tekeze basin --- long distance water diversion --- inverted siphon --- sensitivity analysis --- integrated supply system modeling --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- the Jingjiang River Reach --- the Yangtze River --- reservoir operation --- multi-stage stochastic optimization --- TB-MPC --- flood control --- real-time control --- energy --- hydropower stations --- differential evolution algorithm --- optimal scheduling --- ?-constrained method --- drinking water resources --- water environmental capacity (WEC) --- Environmental Fluid Dynamics Code (EFDC) model --- the Huangshi Reservoir --- seasonal rainfall --- upper Chao Phraya River Basin --- El Niño/Southern Oscillation --- Indian Monsoon --- sea surface temperatures --- reverse regulation --- coupling model --- aftereffect --- accompanying progressive optimality algorithm --- Dokan Dam --- runoff --- sediment load --- SWAT --- natural flow regime --- multi-objective model --- uncertainty --- genetic algorithm --- land and water resources --- system dynamics --- modeling --- scenario analysis --- Heilongjiang --- tropical reservoir --- heating impact --- Langcang-Mekong River --- Kappa distribution --- parameter relation --- partial gauged basin --- power function --- ratio curve --- ungauged basin --- reservoir operation --- integrated surface water-groundwater model --- Heihe River Basin --- environmental flow --- irrigation --- design and operation of the multipurpose reservoir --- water deficit --- reservoir simulation model --- climate change --- multi-objective optimization NSGA II --- resilience and robustness --- costs and benefits --- water energy --- multi-agent of river basin --- game theory --- water resources allocation --- optimal flood control operation --- cascade reservoirs --- dynamic programming with progressive optimality algorithm (DP-POA) --- the upper Yangtze River Basin --- parameterization --- simulation --- optimization --- direct policy search --- hedging policy --- shortage ratio: Vulnerability --- NSGA-II --- lentic habitats --- bitterling --- mussel --- floodplain vertical shape index --- sediment management --- adaptive management --- catchment modelling --- integrated management --- reservoir operation

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972709 Year: Volume: 1 Pages: 404 DOI: 10.3390/books978-3-03897-271-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972761 Year: Volume: 2 Pages: 404 DOI: 10.3390/books978-3-03897-277-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

eng (6)


Year
From To Submit

2019 (6)